Review 10, No Calculator

Complete all the following on notebook paper.

1.

A particle moves in a straight line with velocity $v(t) = t^2$. How far does the particle move between times t = 1 and t = 2?

- (A) $\frac{1}{3}$ (B) $\frac{7}{3}$ (C) 3 (D) 7
- (E) 8

____2.

If $y = \cos^2 3x$, then $\frac{dy}{dx} =$

(A) $-6\sin 3x \cos 3x$

 $-2\cos 3x$ (B)

(C) $2\cos 3x$

(D) $6\cos 3x$

 $2\sin 3x\cos 3x$ (E)

____3.

The *derivative* of $f(x) = \frac{x^4}{3} - \frac{x^5}{5}$ attains its maximum value at $x = \frac{x^4}{5} - \frac{x^5}{5}$

- (A) -1
- (B) 0
- (C) 1
- (D) $\frac{4}{3}$
- (E) $\frac{3}{3}$

If the line 3x-4y=0 is tangent in the first quadrant to the curve $y=x^3+k$, then k is

- (A) $\frac{1}{2}$ (B) $\frac{1}{4}$
- (C) 0 (D) $-\frac{1}{8}$ (E) $-\frac{1}{2}$

If $f(x) = 2x^3 + Ax^2 + Bx - 5$ and if f(2) = 3 and f(-2) = -37, what is the value of A + B?

- (A) -6
- (B) -3
- (C) -1
- (D) 2
- (E) It cannot be determined from the information given.

	6

The acceleration α of a body moving in a straight line is given in terms of time t by $\alpha = 8 - 6t$. If the velocity of the body is 25 at t = 1 and if s(t) is the distance of the body from the origin at time t, what is s(4) - s(2)?

- (A) 20
- (B) 24
- (C) 28
- (D) 32
- (E) 42

If $f(x) = x^{\frac{1}{3}} (x-2)^{\frac{2}{3}}$ for all x, then the domain of f' is

(A) $\{x \mid x \neq 0\}$

(B) $\{x \mid x > 0\}$

- (C) $\{x \mid 0 \le x \le 2\}$
- (D) $\{x \mid x \neq 0 \text{ and } x \neq 2\}$ (E) $\{x \mid x \text{ is a real number}\}$

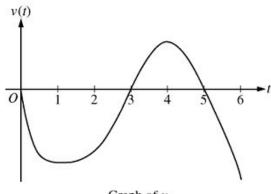
8.

The area of the region bounded by the lines x = 0, x = 2, and y = 0 and the curve $y = e^{\overline{2}}$ is

- (A) $\frac{e-1}{2}$ (B) e-1 (C) 2(e-1) (D) 2e-1
- (E) 2e

9.

The number of bacteria in a culture is growing at a rate of $3000e^{\frac{2t}{5}}$ per unit of time t. At t = 0, the number of bacteria present was 7,500. Find the number present at t = 5.


- (A) $1.200e^2$

- (B) $3,000e^2$ (C) $7,500e^2$ (D) $7,500e^5$ (E) $\frac{15,000}{7}e^7$

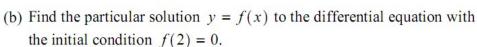
10.

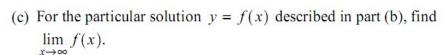
What is the area of the region completely bounded by the curve $y = -x^2 + x + 6$ and the line v = 4?

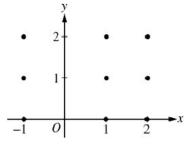
- (A) $\frac{3}{2}$ (B) $\frac{7}{3}$ (C) $\frac{9}{2}$ (D) $\frac{31}{6}$ (E) $\frac{33}{2}$

Graph of v

A particle moves along the x-axis so that its velocity at time t, for $0 \le t \le 6$, is given by a differentiable function v whose graph is shown above. The velocity is 0 at t = 0, t = 3, and t = 5, and the graph has horizontal tangents at t = 1 and t = 4. The areas of the regions bounded by the t-axis and the graph of v on the intervals [0, 3], [3, 5], and [5, 6] are [5, 6] are


- (a) For $0 \le t \le 6$, find both the time and the position of the particle when the particle is farthest to the left. Justify your answer.
- (b) For how many values of t, where $0 \le t \le 6$, is the particle at x = -8? Explain your reasoning.
- (c) On the interval 2 < t < 3, is the speed of the particle increasing or decreasing? Give a reason for your answer.</p>
- (d) During what time intervals, if any, is the acceleration of the particle negative? Justify your answer.


12. 2008-AB5


Consider the differential equation $\frac{dy}{dx} = \frac{y-1}{x^2}$, where $x \neq 0$.

(a) On the axes provided, sketch a slope field for the given differential equation at the nine points indicated.

(Note: Use the axes provided in the exam booklet.)

