AP Calculus AB

Review 17, No Calculator Permitted on MC

Complete all the following on notebook paper.

_____1.

If $\lim_{x\to a} f(x) = L$, where L is a real number, which of the following must be true?

- (A) f'(a) exists.
- (B) f(x) is continuous at x = a.
- (C) f(x) is defined at x = a.
- (D) f(a) = L
- (E) None of the above

2.

$$\frac{d}{dx} \int_{2}^{x} \sqrt{1 + t^2} dt =$$

(A) $\frac{x}{\sqrt{1+x^2}}$

(B) $\sqrt{1+x^2}-5$

(C) $\sqrt{1+x^2}$

(D) $\frac{x}{\sqrt{1+x^2}} - \frac{1}{\sqrt{5}}$

(E) $\frac{1}{2\sqrt{1+v^2}} - \frac{1}{2\sqrt{5}}$

_____ 3.

An equation of the line tangent to $y = x^3 + 3x^2 + 2$ at its point of inflection is

(A) y = -6x - 6

(B) y = -3x + 1

(C) v = 2x + 10

(D) v = 3x - 1

(E) v = 4x + 1

____4.

The average value of $f(x) = x^2 \sqrt{x^3 + 1}$ on the closed interval [0,2] is

- (A) $\frac{26}{9}$ (B) $\frac{13}{3}$ (C) $\frac{26}{3}$ (D) 13

- (E) 26

5.

The region enclosed by the graph of $y = x^2$, the line x = 2, and the x-axis is revolved about the y-axis. The volume of the solid generated is

(A) 8π (B) $\frac{32}{5}\pi$ (C) $\frac{16}{3}\pi$ (D) 4π (E) $\frac{8}{3}\pi$

6.

The area of the region between the graph of $y = 4x^3 + 2$ and the x-axis from x = 1 to x = 2 is

(A) 36

(B) 23

(C) 20

(D) 17

(E) 9

_____ 7.

At what values of x does $f(x) = 3x^5 - 5x^3 + 15$ have a relative maximum?

(A) -1 only

(B) 0 only (C) 1 only (D) -1 and 1 only (E) -1, 0 and 1

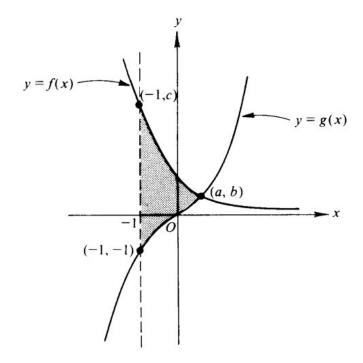
_____8.

If $f(x) = \frac{x}{\tan x}$, then $f'\left(\frac{\pi}{4}\right) =$

(A) 2 (B) $\frac{1}{2}$ (C) $1 + \frac{\pi}{2}$ (D) $\frac{\pi}{2} - 1$ (E) $1 - \frac{\pi}{2}$

9.

Which of the following is equal to $\int \frac{1}{\sqrt{25-x^2}} dx$?


(A) $\arcsin \frac{x}{5} + C$

(B) $\arcsin x + C$

(C) $\frac{1}{5} \arcsin \frac{x}{5} + C$

(D) $\sqrt{25-x^2}+C$

(E) $2\sqrt{25-x^2}+C$

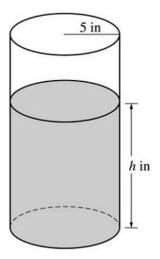
The curves y = f(x) and y = g(x) shown in the figure above intersect at the point (a,b). The area of the shaded region enclosed by these curves and the line x = -1 is given by

(A)
$$\int_0^a (f(x) - g(x)) dx + \int_{-1}^0 (f(x) + g(x)) dx$$

(B)
$$\int_{-1}^{b} g(x) dx + \int_{b}^{c} f(x) dx$$

(C)
$$\int_{-1}^{c} (f(x) - g(x)) dx$$

(D)
$$\int_{-1}^{a} (f(x) - g(x)) dx$$


(E)
$$\int_{-1}^{a} (|f(x)| - |g(x)|) dx$$

II. Free Response

11. 2003-AB5 (No Calculator)

A coffeepot has the shape of a cylinder with radius 5 inches, as shown in the figure above. Let h be the depth of the coffee in the pot, measured in inches, where h is a function of time t, measured in seconds. The volume V of coffee in the pot is changing at the rate of $-5\pi\sqrt{h}$ cubic inches per second. (The volume V of a cylinder with radius r and height h is $V = \pi r^2 h$.)

- (a) Show that $\frac{dh}{dt} = -\frac{\sqrt{h}}{5}$.
- (b) Given that h = 17 at time t = 0, solve the differential equation $\frac{dh}{dt} = -\frac{\sqrt{h}}{5}$ for h as a function of t.
- (c) At what time t is the coffeepot empty?

12. 2003-AB6 (No Calculator)

Let f be the function defined by

$$f(x) = \begin{cases} \sqrt{x+1} & \text{for } 0 \le x \le 3\\ 5-x & \text{for } 3 < x \le 5. \end{cases}$$

- (a) Is f continuous at x = 3? Explain why or why not.
- (b) Find the average value of f(x) on the closed interval $0 \le x \le 5$.
- (c) Suppose the function g is defined by

$$g(x) = \begin{cases} k\sqrt{x+1} & \text{for } 0 \le x \le 3\\ mx+2 & \text{for } 3 < x \le 5, \end{cases}$$

where k and m are constants. If g is differentiable at x = 3, what are the values of k and m?