Complete all the following on notebook paper.

1. If \(f(x) = 2x^2 + 1 \), then \(\lim_{x \to 0} \frac{f(x) - f(0)}{x^2} \) is
 \[\text{(A) } 0 \quad \text{(B) } 1 \quad \text{(C) } 2 \quad \text{(D) } 4 \quad \text{(E) nonexistent} \]

2. If \(p \) is a polynomial of degree \(n \), \(n > 0 \), what is the degree of the polynomial \(Q(x) = \int_0^x p(t) \, dt \)?
 \[\text{(A) } 0 \quad \text{(B) } 1 \quad \text{(C) } n-1 \quad \text{(D) } n \quad \text{(E) } n+1 \]

3. If \(f(x) = 1 + x^3 \), which of the following is NOT true?
 \[\text{(A) } f \text{ is continuous for all real numbers.} \]
 \[\text{(B) } f \text{ has a minimum at } x = 0 \, . \]
 \[\text{(C) } f \text{ is increasing for } x > 0 \, . \]
 \[\text{(D) } f'(x) \text{ exists for all } x \, . \]
 \[\text{(E) } f''(x) \text{ is negative for } x > 0 \, . \]

4. Which of the following functions are continuous at \(x = 1 \)?

 I. \(\ln x \)
 II. \(e^x \)
 III. \(\ln(e^x - 1) \)
 \[\text{(A) I only} \quad \text{(B) II only} \quad \text{(C) I and II only} \quad \text{(D) II and III only} \quad \text{(E) I, II, and III} \]
5. If \(\frac{dy}{dx} = x^2 y \), then \(y \) could be

(A) \(3 \ln \left(\frac{x}{3} \right) \)
(B) \(e^3 + 7 \)
(C) \(2e^3 \)
(D) \(3e^{2x} \)
(E) \(\frac{x^3}{3} + 1 \)

6. The derivative of \(f \) is \(x^4(x-2)(x+3) \). At how many points will the graph of \(f \) have a relative maximum?

(A) None
(B) One
(C) Two
(D) Three
(E) Four

7. If \(f(x) = e^{\tan^2 x} \), then \(f''(x) = \)

(A) \(e^{\tan^2 x} \)
(B) \(\sec^2 x e^{\tan^2 x} \)
(C) \(\tan^2 x e^{\tan^2 x - 1} \)
(D) \(2 \tan x \sec^2 x e^{\tan^2 x} \)
(E) \(2 \tan x e^{\tan^2 x} \)

8. The slope of the line tangent to the graph of \(\ln(xy) = x \) at the point where \(x = 1 \) is

(A) \(0 \)
(B) \(1 \)
(C) \(e \)
(D) \(e^2 \)
(E) \(1 - e \)

9. The value of the derivative of \(y = \frac{3x^2 + 8}{4\sqrt{2x+1}} \) at \(x = 0 \) is

(A) \(-1 \)
(B) \(-\frac{1}{2} \)
(C) \(0 \)
(D) \(\frac{1}{2} \)
(E) \(1 \)
10. A particle moves along the x-axis so that at any time \(t \geq 0 \) the acceleration of the particle is \(a(t) = e^{-2t} \). If at \(t = 0 \) the velocity of the particle is \(\frac{5}{2} \) and its position is \(\frac{17}{4} \), then its position at any time \(t > 0 \) is \(x(t) = \)

(A) \(\frac{e^{-2t}}{2} + 3 \)

(B) \(\frac{e^{-2t}}{4} + 4 \)

(C) \(4e^{-2t} + \frac{9}{2}t + \frac{1}{4} \)

(D) \(\frac{e^{-2t}}{2} + 3t + \frac{15}{4} \)

(E) \(\frac{e^{-2t}}{4} + 3t + 4 \)

11. 2002—AB3B (Calculator Permitted)
A particle moves along the x-axis so that its velocity \(v \) at any time \(t \) for \(0 \leq t \leq 16 \) is given by \(v(t) = e^{2 \sin t} - 1 \). At time \(t = 0 \), the particle is at the origin.

(a) On the axes provided, sketch the graph of \(v(t) \) for \(0 \leq t \leq 16 \).

(b) During what intervals of time is the particle moving to the left? Give a reason for your answer.

(c) Find the total distance traveled by the particle from \(t = 0 \) to \(t = 4 \).

(d) Is there any time \(t, 0 < t \leq 16 \), at which the particle returns to the origin? Justify your answer.

12. 2002—AB4B (No Calculator)
The graph of a differentiable function \(f \) on the closed interval \([-3, 15]\) is shown in the figure above. The graph of \(f \) has a horizontal tangent line at \(x = 6 \). Let \(g(x) = 5 + \int_{6}^{x} f(t) \, dt \) for \(-3 \leq x \leq 15 \).

(a) Find \(g(6) \), \(g'(6) \), and \(g''(6) \).

(b) On what intervals is \(g \) decreasing? Justify your answer.

(c) On what intervals is the graph of \(g \) concave down? Justify your answer.

(d) Find a trapezoidal approximation of \(\int_{-3}^{15} f(t) \, dt \) using six subintervals of length \(\Delta t = 3 \).