1. The graph of \(y = h(x) \) is shown above. Which of the following could be the graph of \(y = h'(x) \)?

(A)

(B)

(C)

(D)

(E)

2. If \(f(x) = \begin{cases} \ln x & \text{for } 0 < x \leq 2 \\ x^2 \ln 2 & \text{for } 2 < x \leq 4 \end{cases} \), then \(\lim_{x \to 2} f(x) \) is

(A) \(\ln 2 \)
(B) \(\ln 8 \)
(C) \(\ln 16 \)
(D) 4
(E) nonexistent
The graph of the function \(f \) shown in the figure above has a vertical tangent at the point \((2, 0)\) and horizontal tangents at the points \((1, -1)\) and \((3, 1)\). For what values of \(x, \ -2 < x < 4, \) is \(f \) not differentiable?

(A) 0 only \hspace{1cm} (B) 0 and 2 only \hspace{1cm} (C) 1 and 3 only \hspace{1cm} (D) 0, 1, and 3 only \hspace{1cm} (E) 0, 1, 2, and 3

What is the approximation of the value of \(\sin 1 \) obtained by using the fifth-degree Taylor polynomial about \(x = 0 \) for \(\sin x \)?

(A) \(1 - \frac{1}{2} + \frac{1}{24} \)

(B) \(1 - \frac{1}{2} + \frac{1}{4} \)

(C) \(1 - \frac{1}{3} + \frac{1}{5} \)

(D) \(1 - \frac{1}{4} + \frac{1}{8} \)

(E) \(1 - \frac{1}{6} + \frac{1}{120} \)

If \(f \) is the function defined by \(f(x) = 3x^5 - 5x^4 \), what are all the \(x \)-coordinates of points of inflection for the graph of \(f \)?

(A) -1 \hspace{1cm} (B) 0 \hspace{1cm} (C) 1 \hspace{1cm} (D) 0 and 1 \hspace{1cm} (E) -1, 0, and 1
6. \[\int x \cos x \, dx = \]
(A) \(x \sin x - \cos x + C \)
(B) \(x \sin x + \cos x + C \)
(C) \(-x \sin x + \cos x + C \)
(D) \(x \sin x + C \)
(E) \(\frac{1}{2} x^2 \sin x + C \)

7.

The graph of a twice-differentiable function \(f \) is shown in the figure above. Which of the following is true?

(A) \(f'(1) < f''(1) < f'''(1) \)
(B) \(f'(1) < f'''(1) < f''(1) \)
(C) \(f''(1) < f'(1) < f'''(1) \)
(D) \(f'''(1) < f'(1) < f''(1) \)

8. Which of the following series converge?

I. \[\sum_{n=1}^{\infty} \frac{n}{n+2} \]
II. \[\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n} \]
III. \[\sum_{n=1}^{\infty} \frac{1}{n} \]

(A) None
(B) II only
(C) III only
(D) I and II only
(E) I and III only
9. The area of the region inside the polar curve \(r = 4\sin \theta \) and outside the polar curve \(r = 2 \) is given by

\[
\text{(A) } \frac{1}{2} \int_0^\pi (4\sin \theta - 2)^2 d\theta \quad \text{(B) } \frac{1}{2} \int_{\pi/4}^{3\pi/4} (4\sin \theta - 2)^2 d\theta \quad \text{(C) } \frac{1}{2} \int_{\pi/6}^{5\pi/6} (4\sin \theta - 2)^2 d\theta
\]

\[
\text{(D) } \frac{1}{2} \int_{\pi/6}^{5\pi/6} (16\sin^2 \theta - 4) d\theta \quad \text{(E) } \frac{1}{2} \int_0^\pi (16\sin^2 \theta - 4) d\theta
\]

10. When \(x = 8 \), the rate at which \(\sqrt[3]{x} \) is increasing is \(\frac{1}{k} \) times the rate at which \(x \) is increasing. What is the value of \(k \)?

\[
\text{(A) } 3 \quad \text{(B) } 4 \quad \text{(C) } 6 \quad \text{(D) } 8 \quad \text{(E) } 12
\]

Free Response

11. 2009-AB/BC2 (Calculator Permitted)

The rate at which people enter an auditorium for a rock concert is modeled by the function \(R \) given by
\[R(t) = 1380t^2 - 675t^3 \] for \(0 \leq t \leq 2 \) hours; \(R(t) \) is measured in people per hour. No one is in the auditorium at time \(t = 0 \), when the doors open. The doors close and the concert begins at time \(t = 2 \).

(a) How many people are in the auditorium when the concert begins?

(b) Find the time when the rate at which people enter the auditorium is a maximum. Justify your answer.

(c) The total wait time for all the people in the auditorium is found by adding the time each person waits, starting at the time the person enters the auditorium and ending when the concert begins. The function \(w \) models the total wait time for all the people who enter the auditorium before time \(t \). The derivative of \(w \) is given by \(w'(t) = (2 - t)R(t) \). Find \(w(2) - w(1) \), the total wait time for those who enter the auditorium after time \(t = 1 \).

(d) On average, how long does a person wait in the auditorium for the concert to begin? Consider all people who enter the auditorium after the doors open, and use the model for total wait time from part (c).
Caren rides her bicycle along a straight road from home to school, starting at home at time $t = 0$ minutes and arriving at school at time $t = 12$ minutes. During the time interval $0 \leq t \leq 12$ minutes, her velocity $v(t)$, in miles per minute, is modeled by the piecewise-linear function whose graph is shown above.

(a) Find the acceleration of Caren's bicycle at time $t = 7.5$ minutes. Indicate units of measure.

(b) Using correct units, explain the meaning of $\int_0^{12} |v(t)| \, dt$ in terms of Caren's trip. Find the value of $\int_0^{12} |v(t)| \, dt$.

(c) Shortly after leaving home, Caren realizes she left her calculus homework at home, and she returns to get it. At what time does she turn around to go back home? Give a reason for your answer.

(d) Larry also rides his bicycle along a straight road from home to school in 12 minutes. His velocity is modeled by the function w given by $w(t) = \frac{\pi}{15} \sin \left(\frac{\pi}{12} t \right)$, where $w(t)$ is in miles per minute for $0 \leq t \leq 12$ minutes. Who lives closer to school: Caren or Larry? Show the work that leads to your answer.