1. Which of the following represents the area of the shaded region in the figure above?

(A) \(\int_{c}^{d} f(y) \, dy \)
(B) \(\int_{a}^{b} (d - f(x)) \, dx \)
(C) \(f'(b) - f'(a) \)
(D) \((b-a)[f(b) - f(a)] \)
(E) \((d-c)[f(b) - f(a)] \)

2. If \(x^3 + 3xy + 2y^3 = 17 \), then in terms of \(x \) and \(y \), \(\frac{dy}{dx} =

(A) \(-\frac{x^2 + y}{x + 2y^2}\)
(B) \(-\frac{x^2 + y}{x + y^2}\)
(C) \(-\frac{x^2 + y}{x + 2y}\)
(D) \(-\frac{x^2 + y}{2y^2}\)
(E) \(-\frac{x^2}{1 + 2y^2}\)

3. \(\int \frac{3x^2}{\sqrt{x^3 + 1}} \, dx =

(A) 2\sqrt{x^3 + 1} + C
(B) \frac{3}{2} \sqrt{x^3 + 1} + C
(C) \sqrt{x^3 + 1} + C
(D) \ln \sqrt{x^3 + 1} + C
(E) \ln(x^3 + 1) + C \)
4. For what value of x does the function $f(x) = (x-2)(x-3)^2$ have a relative maximum?

(A) -3 (B) $\frac{-7}{3}$ (C) $\frac{-5}{2}$ (D) $\frac{7}{3}$ (E) $\frac{5}{2}$

5. If $f(x) = \sin\left(\frac{x}{2}\right)$, then there exists a number c in the interval $\frac{\pi}{2} < x < \frac{3\pi}{2}$ that satisfies the conclusion of the Mean Value Theorem. Which of the following could be c?

(A) $\frac{2\pi}{3}$ (B) $\frac{3\pi}{4}$ (C) $\frac{5\pi}{6}$ (D) π (E) $\frac{3\pi}{2}$

6. If $f(x) = (x-1)^2 \sin x$, then $f'(0) =$

(A) -2 (B) -1 (C) 0 (D) 1 (E) 2

7. The acceleration of a particle moving along the x-axis at time t is given by $a(t) = 6t - 2$. If the velocity is 25 when $t = 3$ and the position is 10 when $t = 1$, then the position $x(t) =$

(A) $9t^2 + 1$ (B) $3t^2 - 2t + 4$ (C) $t^3 - t^2 + 4t + 6$ (D) $t^3 - t^2 + 9t - 20$ (E) $36t^3 - 4t^2 - 77t + 55$
8. \(\frac{d}{dx} \int_0^x \cos(2\pi u) \, du \) is

(A) 0 \hspace{1cm} (B) \frac{1}{2\pi} \sin x \hspace{1cm} (C) \frac{1}{2\pi} \cos(2\pi x) \hspace{1cm} (D) \cos(2\pi x) \hspace{1cm} (E) 2\pi \cos(2\pi x)

9. The graph of the function \(f \) is shown above for \(0 \leq x \leq 3 \). Of the following, which has the least value?

(A) \(\int_1^3 f(x) \, dx \)

(B) Left Riemann sum approximation of \(\int_1^3 f(x) \, dx \) with 4 subintervals of equal length.

(C) Right Riemann sum approximation of \(\int_1^3 f(x) \, dx \) with 4 subintervals of equal length.

(D) Midpoint Riemann sum approximation of \(\int_1^3 f(x) \, dx \) with 4 subintervals of equal length.

(E) Trapezoidal sum approximation of \(\int_1^3 f(x) \, dx \) with 4 subintervals of equal length.

10. What is the minimum value of \(f(x) = x \ln x \)?

(A) \(-e\) \hspace{1cm} (B) \(-1\) \hspace{1cm} (C) \(-\frac{1}{e}\) \hspace{1cm} (D) 0 \hspace{1cm} (E) \(f(x) \) has no minimum value.
11. (1999, AB-5) The graph of the function f, consisting of three line segments, is shown above. Let

$$g(x) = \int_{1}^{x} f(t) \, dt.$$

(a) Compute $g(4)$ and $g(-2)$.

(b) Find the instantaneous rate of change of g, with respect to x, at $x = 1$.

(c) Find the absolute minimum value of g on the closed interval $[-2, 4]$. Justify your answer.

(d) The second derivative of g is not defined at $x = 1$ and $x = 2$. How many of these values are x-coordinates of points of inflection of the graph of g? Justify your answer.
12. (1998, AB-4) Let \(f \) be a function with \(f(1) = 4 \) such that for all points \((x, y)\) on the graph of \(f \) the slope is given by \(\frac{3x^2 + 1}{2y} \).

(a) Find the slope of the graph of \(f \) at the point where \(x = 1 \).

(b) Write an equation for the line tangent to the graph of \(f \) at \(x = 1 \), and use it to approximate \(f(1.2) \).

(c) Find \(f(x) \) by solving the separable differential equation \(\frac{dy}{dx} = \frac{3x^2 + 1}{2y} \) with the initial condition \(f(1) = 4 \).

(d) Use your solution from part (c) to find \(f(1.2) \).