BC Review 09 No Calculator Permitted

1.

At time $t \ge 0$, a particle moving in the xy-plane has velocity vector given by $v(t) = \langle t^2, 5t \rangle$. What is the acceleration vector of the particle at time t = 3?

- (A) $\left\langle 9, \frac{45}{2} \right\rangle$ (B) $\left\langle 6, 5 \right\rangle$ (C) $\left\langle 2, 0 \right\rangle$ (D) $\sqrt{306}$ (E) $\sqrt{61}$

2.

$$\int x e^{x^2} dx =$$

- (A) $\frac{1}{2}e^{x^2} + C$ (B) $e^{x^2} + C$ (C) $xe^{x^2} + C$ (D) $\frac{1}{2}e^{2x} + C$ (E) $e^{2x} + C$

3.

Consider the series $\sum_{n=1}^{\infty} \frac{e^n}{n!}$. If the ratio test is applied to the series, which of the following inequalities results, implying that the series converges?

- (A) $\lim_{n\to\infty} \frac{e}{n!} < 1$
- (B) $\lim_{n \to \infty} \frac{n!}{e} < 1$
- (C) $\lim_{n \to \infty} \frac{n+1}{e} < 1$
- (D) $\lim_{n\to\infty} \frac{e}{n+1} < 1$
- (E) $\lim_{n\to\infty} \frac{e}{(n+1)!} < 1$

4.

Which of the following gives the length of the path described by the parametric equations $x = \sin(t^3)$ and $y = e^{5t}$ from t = 0 to $t = \pi$?

- (A) $\int_0^{\pi} \sqrt{\sin^2(t^3) + e^{10t}} dt$
- (B) $\int_0^{\pi} \sqrt{\cos^2(t^3) + e^{10t}} dt$
- (C) $\int_0^{\pi} \sqrt{9t^4 \cos^2(t^3) + 25e^{10t}} dt$
- (D) $\int_0^{\pi} \sqrt{3t^2 \cos(t^3) + 5e^{5t}} dt$
- (E) $\int_0^{\pi} \sqrt{\cos^2(3t^2) + e^{10t}} dt$

5.

$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & \text{if } x \neq 2\\ 1 & \text{if } x = 2 \end{cases}$$

Let f be the function defined above. Which of the following statements about f are true?

- I. f has a limit at x = 2.
- II. f is continuous at x = 2.
- III. f is differentiable at x = 2.
- (A) I only
- (B) II only
- (C) III only
- (D) I and II only
- (E) I, II, and III

6.

Given that y(1) = -3 and $\frac{dy}{dx} = 2x + y$, what is the approximation for y(2) if Euler's method is used with a step size of 0.5, starting at x = 1?

(A) -5

(B) -4.25 (C) -4 (D) -3.75 (E) -3.5

7.

x	2	3	5	8	13
f(x)	6	-2	-1	3	9

The function f is continuous on the closed interval [2, 13] and has values as shown in the table above. Using the intervals [2, 3], [3, 5], [5, 8], and [8, 13], what is the approximation of $\int_2^{13} f(x) dx$ obtained from a left Riemann sum?

(A) 6

(B) 14

(C) 28

(D) 32

(E) 50

8.

In the xy-plane, what is the slope of the line tangent to the graph of $x^2 + xy + y^2 = 7$ at the point (2, 1)?

(A) $-\frac{4}{3}$ (B) $-\frac{5}{4}$ (C) -1 (D) $-\frac{4}{5}$ (E) $-\frac{3}{4}$

Let R be the region between the graph of $y = e^{-2x}$ and the x-axis for $x \ge 3$. The area of R is

- (A) $\frac{1}{2e^6}$ (B) $\frac{1}{e^6}$ (C) $\frac{2}{e^6}$ (D) $\frac{\pi}{2e^6}$ (E) infinite

10.

Which of the following series converges for all real numbers x?

- (A) $\sum_{n=1}^{\infty} \frac{x^n}{n}$
- (B) $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$
- (C) $\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$
- (D) $\sum_{n=1}^{\infty} \frac{e^n x^n}{n!}$
- (E) $\sum_{n=1}^{\infty} \frac{n! x^n}{e^n}$

11. (2013, BC-6)

A function f has derivatives of all orders at x = 0. Let $P_n(x)$ denote the nth-degree Taylor polynomial for f about x = 0.

- (a) It is known that f'(0) = -4 and that $P_1\left(\frac{1}{2}\right) = -3$. Show that f'(0) = 2.
- (b) It is known that $f''(0) = -\frac{2}{3}$ and $f'''(0) = \frac{1}{3}$. Find $P_3(x)$.
- (c) The function h has first derivative given by h'(x) = f(2x). It is known that h(0) = 7. Find the third-degree Taylor polynomial for h about x = 0.

12. (2010, BC-6B)

The Maclaurin series for the function f is given by $f(x) = \sum_{n=2}^{\infty} \frac{(-1)^n (2x)^n}{n-1}$ on its interval of convergence.

- (a) Find the interval of convergence for the Maclaurin series of f. Justify your answer.
- (b) Show that y = f(x) is a solution to the differential equation $xy' y = \frac{4x^2}{1 + 2x}$ for |x| < R, where R is the radius of convergence from part (a).