If
$$f(x) = (\ln x)^2$$
, then $f''(\sqrt{e}) =$

- (A) $\frac{1}{e}$ (B) $\frac{2}{e}$ (C) $\frac{1}{2\sqrt{e}}$ (D) $\frac{1}{\sqrt{e}}$ (E) $\frac{2}{\sqrt{e}}$

What are all values of x for which the series $\sum_{n=1}^{\infty} \left(\frac{2}{x^2+1}\right)^n$ converges?

(A)
$$-1 < x < 1$$

(B)
$$x > 1$$
 only

(C)
$$x \ge 1$$
 only

(D)
$$x < -1$$
 and $x > 1$ only

(E)
$$x \le -1$$
 and $x \ge 1$

Let h be a differentiable function, and let f be the function defined by $f(x) = h(x^2 - 3)$. Which of the following is equal to f'(2)?

- (A) h'(1)
- (B) 4h'(1)
- (C) 4h'(2)
- (D) h'(4)
- (E) 4h'(4)

4.

In the xy-plane, the line x + y = k, where k is a constant, is tangent to the graph of $y = x^2 + 3x + 1$. What is the value of k?

- (A) -3
- (B) -2
- (C) -1
- (D) 0
- **(E)** 1

5.

$$\int \frac{7x}{(2x-3)(x+2)} \, dx =$$

(A)
$$\frac{3}{2}\ln|2x-3|+2\ln|x+2|+C$$

(B)
$$3\ln|2x-3|+2\ln|x+2|+C$$

(C)
$$3\ln|2x-3|-2\ln|x+2|+C$$

(D)
$$-\frac{6}{(2x-3)^2} - \frac{2}{(x+2)^2} + C$$

(E)
$$-\frac{3}{(2x-3)^2} - \frac{2}{(x+2)^2} + C$$

What is the sum of the series $1 + \ln 2 + \frac{(\ln 2)^2}{2!} + \dots + \frac{(\ln 2)^n}{n!} + \dots$?

- (A) ln 2
- (B) $\ln(1 + \ln 2)$
- (C) 2
- (D) e^{2}
- (E) The series diverges.

7.

x	0	1
f(x)	2	4
f'(x)	6	-3
g(x)	-4	3
g'(x)	2	-1

The table above gives values of f, f', g, and g' for selected values of x. If $\int_0^1 f'(x)g(x) dx = 5$, then $\int_0^1 f(x)g'(x) \, dx =$

- (A) -14 (B) -13 (C) -2
- (D) 7
- (E) 15

If $f(x) = x \sin(2x)$, which of the following is the Taylor series for f about x = 0?

(A)
$$x - \frac{x^3}{2!} + \frac{x^5}{4!} - \frac{x^7}{6!} + \cdots$$

(B)
$$x - \frac{4x^3}{2!} + \frac{16x^5}{4!} - \frac{64x^7}{6!} + \cdots$$

(C)
$$2x - \frac{8x^3}{3!} + \frac{32x^5}{5!} - \frac{128x^7}{7!} + \cdots$$

(D)
$$2x^2 - \frac{2x^4}{3!} + \frac{2x^6}{5!} - \frac{2x^8}{7!} + \cdots$$

(E)
$$2x^2 - \frac{8x^4}{3!} + \frac{32x^6}{5!} - \frac{128x^8}{7!} + \cdots$$

9.

Which of the following differential equations for a population P could model the logistic growth shown in the figure above?

(A)
$$\frac{dP}{dt} = 0.2P - 0.001P^2$$

(B)
$$\frac{dP}{dt} = 0.1P - 0.001P^2$$

(C)
$$\frac{dP}{dt} = 0.2P^2 - 0.001P$$

(D)
$$\frac{dP}{dt} = 0.1P^2 - 0.001P$$

(E)
$$\frac{dP}{dt} = 0.1P^2 + 0.001P$$

In the xy-plane, a particle moves along the parabola $y = x^2 - x$ with a constant speed of $2\sqrt{10}$ units per second. If $\frac{dx}{dt} > 0$, what is the value of $\frac{dy}{dt}$ when the particle is at the point (2, 2)?

- (A) $\frac{2}{3}$ (B) $\frac{2\sqrt{10}}{3}$ (C) 3 (D) 6 (E) $6\sqrt{10}$

11. (2012, BC-6)

The function g has derivatives of all orders, and the Maclaurin series for g is

$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+3} = \frac{x}{3} - \frac{x^3}{5} + \frac{x^5}{7} - \cdots$$

- (a) Using the ratio test, determine the interval of convergence of the Maclaurin series for g.
- (b) The Maclaurin series for g evaluated at $x = \frac{1}{2}$ is an alternating series whose terms decrease in absolute value to 0. The approximation for $g\left(\frac{1}{2}\right)$ using the first two nonzero terms of this series is $\frac{17}{120}$. Show that this approximation differs from $g\left(\frac{1}{2}\right)$ by less than $\frac{1}{200}$.
- (c) Write the first three nonzero terms and the general term of the Maclaurin series for g'(x).

Let $f(x) = \sin(x^2) + \cos x$. The graph of $y = |f^{(5)}(x)|$ is shown above.

- (a) Write the first four nonzero terms of the Taylor series for $\sin x$ about x = 0, and write the first four nonzero terms of the Taylor series for $\sin(x^2)$ about x = 0.
- (b) Write the first four nonzero terms of the Taylor series for $\cos x$ about x = 0. Use this series and the series for $\sin(x^2)$, found in part (a), to write the first four nonzero terms of the Taylor series for f about x = 0.
- (c) Find the value of $f^{(6)}(0)$.
- (d) Let $P_4(x)$ be the fourth-degree Taylor polynomial for f about x = 0. Using information from the graph of $y = \left| f^{(5)}(x) \right|$ shown above, show that $\left| P_4\left(\frac{1}{4}\right) f\left(\frac{1}{4}\right) \right| < \frac{1}{3000}$.