Worksheet 1.2—Properties of Limits

Show all work. Unless stated otherwise, no calculator permitted.

Short Answer

1. Given that \(\lim_{x \to a} f(x) = -3 \), \(\lim_{x \to a} g(x) = 0 \), \(\lim_{x \to a} h(x) = 8 \), for some constant \(a \), find the limits that exist. If the limit does not exist, explain why.

(a) \(\lim_{x \to a} [f(x) + h(x)] = \)
(b) \(\lim_{x \to a} [f(x)]^2 = \)
(c) \(\lim_{x \to a} \sqrt{h(x)} = \)
(d) \(\lim_{x \to a} \frac{1}{f(x)} = \)

(e) \(\lim_{x \to a} \frac{f(x)}{h(x)} = \)
(f) \(\lim_{x \to a} \frac{g(x)}{f(x)} = \)
(g) \(\lim_{x \to a} \frac{f(x)}{g(x)} = \)
(h) \(\lim_{x \to a} \frac{2f(x)}{h(x) - f(x)} = \)
2. The graphs of \(f \) and \(g \) are given below. Use them to evaluate each limit, if it exists. If the limit does not exist, explain why.

(a) \(\lim_{x \to 2} [f(x) + g(x)] = \)

(b) \(\lim_{x \to 1} [2f(x) - 3g(x)] = \)

(c) \(\lim_{x \to 0} f(x)g(x) = \)

(d) \(\lim_{x \to 1} \frac{f(x)}{g(x)} = \)

(e) \(\lim_{x \to 2} x^3f(x) = \)

(f) \(\lim_{x \to 1^-} f(g(x)) = \)
3. The graphs of the functions \(f(x) = x \), \(g(x) = -x \), and
\[h(x) = x \cos\left(\frac{50\pi}{x}\right) \]
on the interval \(-1 \leq x \leq 1\) are given at right.

Use the Squeeze Theorem to find
\[\lim_{x \to 0} x \cos\left(\frac{50\pi}{x}\right) \]. Justify.

4. If \(1 \leq f(x) \leq x^2 + 2x + 2 \) for all \(x \), find
\[\lim_{x \to 1} f(x) \]. Justify.

5. If \(-3\cos(\pi x) \leq f(x) \leq x^3 + 2 \), evaluate
\[\lim_{x \to 1} f(x) \]. Justify
Multiple Choice

6. Suppose \(2 \leq f(x) \leq (1-x)^2 + 2 \) for all \(x \neq 1 \) and that \(f(1) \) is undefined. What is \(\lim_{x \to 1} f(x) \)?

(A) 3
(B) 2
(C) 4
(D) \(\frac{5}{2} \)
(E) 1

Use the graphs of the function \(f(x) \) and \(g(x) \) shown above to answer questions 7 – 9.

7. \(\lim_{x \to 2^-} \left(\frac{f(x)}{g(x)} \right) = \)

(A) 1
(B) -1
(C) 2
(D) -2
(E) DNE

8. \(\lim_{x \to 3^-} f(g(x)) = \)

(A) 0
(B) -1
(C) 2
(D) 1
(E) DNE

9. \(g(1) + \lim_{x \to 1^+} x \cdot f(x) = \)

(A) 0
(B) -1
(C) 2
(D) 1
(E) DNE