Name Date Period

Worksheet 2.4—Product & Quotient Rules

Show all work. No calculator permitted unless otherwise stated.

Short Answer

- 1. Find the derivative of each function using correct notation (never not always). Show all steps, including rewriting the original function as well as simplifying your final answer s by combining like terms and/or factoring out common factors. (except part (d)).
- (a) $h(t) = 2t \cos t + t^2 \sin t$ (b) $f(x) = 2x^2 \cot x$ (c) $f(x) = \frac{\tan x}{\sin x + 1}$

(d) $f(x) = \frac{x \sec x}{x^2 + 1}$

- (e) $f(x) = \cot x \csc x$ (f) $h(x) = \csc^2 x = (\csc x)(\csc x)$

2. If $f(x) = \sin x (\sin x + \cos x)$, find the equation of the tangent line at $x = \frac{\pi}{4}$.

3. Find the equation of the <u>normal</u> line to $f(x) = (x-1)(x^2+1)$ at the point where f(x) crosses the x-axis.

4. (Calculator Permitted) Determine the *x*-coordinates at which the graph of the function has a horizontal tangent line.

(a)
$$f(x) = \frac{x^2}{x-1}$$

(b)
$$g(x) = x^2 \sin x, -2\pi \le x \le 2\pi$$

5. Find the equation(s) of the tangent line(s) to the graph of $y = \frac{x+1}{x-1}$ that are parallel to the line 2y + x = 6.

- 6. The volume of a right circular cylinder is given by $V = \pi r^2 h$. If the radius of such a cylinder is given by $r = \sqrt{t+2}$ and its height is $h = \frac{\sqrt{t}}{2}$, where t is time in seconds and the dimensions are in inches.
 - (a) Find an equation for the volume, V(t), of the right circular cylinder as a function of time.

(b) Find the rate of change of volume with respect to time, $V'(t) = \frac{dV}{dt}$.

(c) How fast is the volume of the cylinder changing when t = 1?

7. If the normal line to the graph of a function f at the point (1,2) passes through the point (-1,1), then what is the value of f'(1)? (Hint: Think Algebra I)

8. Find the following by being cleverly clever.

(a)
$$\frac{d^{999}}{dx^{999}} [\cos x] =$$

(b)
$$\frac{d^4}{dx^4} \left[\frac{1}{x} \right] = \frac{d^4}{dx^4} \left[x^{-1} \right] =$$

Multiple Choice

9. If
$$y = \frac{2-x}{3x+1}$$
, then $\frac{dy}{dx} =$

(A) $-\frac{7}{(3x+1)^2}$ (B) $\frac{6x-5}{(3x+1)^2}$ (C) $-\frac{9}{(3x+1)^2}$ (D) $\frac{7}{(3x+1)^2}$ (E) $\frac{7-6x}{(3x+1)^2}$

$$(A) - \frac{7}{\left(3x+1\right)^2}$$

(B)
$$\frac{6x-5}{(3x+1)^2}$$

(C)
$$-\frac{9}{(3x+1)^2}$$

(D)
$$\frac{7}{(3x+1)^2}$$

(E)
$$\frac{7-6x}{(3x+1)^2}$$

For questions 10-13, use the chart below, which gives selected values for differentiable functions f(x) and g(x) and their derivatives.

х	f(x)	f'(x)	g(x)	g'(x)
0	2	1	5	-4
1	3	2	3	-3
2	5	3	1	-2
3	10	4	0	-1

____10. If
$$h(x) = f(x) + 2g(x)$$
, then $h'(3) =$
(A) -2 (B) 2 (C) 7 (D) 8 (E) 10

_____ 11. If
$$h(x) = f(x) \cdot g(x)$$
, then $h'(2) =$
(A) -20 (B) -7 (C) -6 (D) -1 (E) 13

_____12. If
$$h(x) = \frac{1}{g(x)}$$
, then $h'(1) =$

$$(A) -\frac{1}{2} \qquad (B) -\frac{1}{3} \qquad (C) -\frac{1}{9} \qquad (D) \frac{1}{9} \qquad (E) \frac{1}{3}$$

_____ 13. If
$$h(x) = \frac{f(x)}{g(x)}$$
, then $h'(0) =$

(A) $-\frac{13}{25}$ (B) $-\frac{1}{4}$ (C) $\frac{13}{25}$ (D) $\frac{13}{16}$ (E) $\frac{22}{25}$