Worksheet 4.3—The Fundamental Theorem of Calculus
Show all work. No calculator unless otherwise stated.

Multiple Choice

1. (Calculator Permitted) What is the average value of \(f(x) = \cos x \) on the interval \([1,5]\)?
 - (A) –0.990
 - (B) –0.450
 - (C) –0.128
 - (D) 0.412
 - (E) 0.998

2. If the average value of the function \(f \) on the interval \([a,b]\) is 10, then \(\int_a^b f(x)dx = \)
 - (A) \(\frac{10}{b-a} \)
 - (B) \(\frac{f(a) + f(b)}{10} \)
 - (C) \(10b - 10a \)
 - (D) \(\frac{b-a}{10} \)
 - (E) \(\frac{f(a) + f(b)}{20} \)

3. (Calculator Permitted) Let \(f'(x) = \ln(2 + \sin x) \). If \(f(3) = 4 \), then \(f(5) = \)
 - (A) 0.040
 - (B) 0.272
 - (C) 0.961
 - (D) 4.555
 - (E) 6.667
4. What is \(\lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t) \, dt \) ?

(A) 0 (B) 1 (C) \(f'(x) \) (D) \(f(x) \) (E) nonexistent

5. What is the linearization of \(f(x) = \int_{x}^{\pi} \cos^3 t \, dt \) at \(x = \pi \) ?

(A) \(y = -1 \) (B) \(y = -x \) (C) \(y = \pi \) (D) \(y = x - \pi \) (E) \(y = \pi - x \)

6. (Calculator Permitted) The area of the region enclosed between the graph of \(y = \sqrt{1-x^4} \) and the x-axis is

(A) 0.886 (B) 1.253 (C) 1.414 (D) 1.571 (E) 1.748
Short Answer

7. Let \(f \) be a function such that \(f''(x) = 6x + 12 \).
 (a) Find \(f(x) \) if the graph of \(f \) is tangent to the line \(4x - y = 5 \) at the point \((0, -5)\)

 (b) Find the average value of \(f(x) \) on the closed interval \([-1, 1]\).

8. Suppose \(f \) has a negative derivative for all values of \(x \) and that \(f(1) = 0 \). Which of the following statements must be true of the function

 \[h(x) = \int_{0}^{x} f(t) \, dt \]

 Give reasons for your answers.
 (a) \(h \) is a twice-differentiable function of \(x \).
 (b) \(h \) and \(dh/dx \) are both continuous.
 (c) The graph of \(h \) has a horizontal tangent at \(x = 1 \).
 (d) \(h \) has a local maximum at \(x = 1 \).
 (e) \(h \) has a local minimum at \(x = 1 \).
 (f) The graph of \(h \) has an inflection point at \(x = 1 \).
 (g) The graph of \(dh/dx \) crosses the \(x \)-axis at \(x = 1 \).
9. Find \(\frac{dy}{dx} \)

(a) \(y = \int_{-\pi}^{x} \frac{2 \sin t}{3 + \cos t} \, dt \)

(b) \(y = \int_{x}^{7} \sqrt{2m^4 + m + 1} \, dm \)

(c) \(y = \int_{x}^{5} \frac{\cos t}{t^2 + 1} \, dt \)

(d) \(y = \int_{\sqrt{x}}^{x} \sqrt{u} \sin u \, du \)

10. If \(F(x) = \int_{1}^{x} f(t) \, dt \), where \(f(t) = \int_{1}^{t} \sqrt{1 + u^4} \, du \), find \(F''(2) \).
11. (Calculator Permitted) If \(\frac{dy}{dx} = \sin^3 x \) and \(y = 4 \) when \(x = 5 \), construct and evaluate an integral equation to find

(a) \(y(7) \)
(b) \(y(0) \)
(c) \(y(-2) \)
(d) \(y(x) \)

12. Evaluate without a calculator, then verify using fnINT(

(a) \(\int_{-1}^{2} 3^x \, dx \)
(b) \(\int_{-2}^{x^2} \frac{1}{x^2} \, dx \)
(c) \(\int_{0}^{x^2 + \sqrt{x}} \, dx \)
(d) \(\int_{\pi/6}^{5\pi/6} \csc^2 \theta \, d\theta \)
(e) \(\int_{0}^{4} \frac{1 - \sqrt{u}}{\sqrt{u}} \, du \)

(f) \(\int_{0}^{2} x(2 + x^5) \, dx \)
(g) \(\int_{0}^{\frac{4}{t^2 + 1}} \, dt \)
(h) \(\int_{0}^{2} f(x) \, dx \) where \(f(x) = \begin{cases} x^4, & 0 \leq x < 1 \\ x^5, & 1 \leq x \leq 2 \end{cases} \)
13. Find the area of the region bounded by the x-axis and the curve $y = x^3 - 4x$ on $-2 \leq x \leq 2$

14. If $f(1) = 12$, $f'(x)$ is continuous, and $\int_{1}^{4} f'(x) = 17$, what is the value of $f(4)$?

15. Find the average value of the following function on the given intervals. Verify with fnINT(
 (a) $f(x) = \cos x$ on $[0, \pi/2]$
 (b) $f(x) = 1/x$ on $[1, 4]$
 (c) $y = \sec x \tan x$ on $[0, \pi/4]$
16. The graph of f is shown above. If $F(x) = \int_2^x f(t) \, dt$, evaluate the following using areas to help you.

(a) $F(0)$
(b) $F(2)$
(c) $F(5)$
(d) $F(7) - F(5)$
(e) $F(9)$

(f) where does F have a maximum value? A minimum value?

(g) What is the average value of $f(x)$ on $[2, 9]$?
17. Let \(g(x) = \int_{0}^{x} f(t) \, dt \), where \(f \) is the function whose graph is given below.

(a) At what values of \(x \) do the local maximum and local minimum of \(g \) occur? Justify.

(b) Where does \(g \) attain its absolute maximum value?

(c) On what approximate intervals is \(g \) concave downward?

(d) Sketch the graph of \(g \).
18. (Calculator Permitted) If a cup of coffee has temperature $95^\circ C$ in a room where the temperature is $20^\circ C$, then, according to Newton’s Law of Cooling, the temperature of the coffee after t minutes is $T(t) = 20 + 75e^{-t/50}$.

What is the average temperature of the coffee during the first half hour? Show your integral set up. Include units in your final answer.