Name Date Period

Worksheet 6.5—L'Hôpital's Rule and Indeterminate Forms

Show all work. No calculator at all. Not one keystroke.

Multiple Choice

- 1. Which of the following gives the value of $\lim_{x\to 0} \frac{x}{\tan x}$?
 - (A) -1 (B) 0
- (C) 1 (D) π
- (E) Does not exist

- 2. Which of the following gives the value of $\lim_{x\to 1} \frac{1-1/x}{1-1/x^2}$?
 - (A) Does not exist
- (B) 2 (C) 1
- (D) 1/2
- (E) 0

- 3. Which of the following gives the value of $\lim_{x\to\infty} \frac{\log_2 x}{\log_3 x}$?

- (A) 1 (B) $\frac{\ln 3}{\ln 2}$ (C) $\frac{\ln 2}{\ln 3}$ (D) $\ln \left(\frac{3}{2}\right)$ (E) $\ln \left(\frac{2}{3}\right)$

- 4. Which of the following gives the value of $\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^{3x}$?

 (A) 0 (B) 1 (C) e (D) e^2 (E) e^3

- (A) 0
- (B) 1/2
- (D) Does not exist
- (E) Cannot be determined from the information given

- 6. What is $\lim_{x\to 0} \frac{e^{2x} 1}{\tan x}$?
 (A) -1
- (B) 0
- (C) 1
- (D) 2
- (E) Does not exist

7. What is $\lim_{m\to 0} \frac{1}{m} \ln\left(\frac{2+m}{2}\right)$?

(A) e^2 (B) 1 (C) 1/2 (E) 0 (E) Does not exist

8. What is $\lim_{n\to\infty} \frac{4n^2}{10,000n+n^2}$?

(A) 0 (B) $\frac{1}{2,500}$ (C) 1 (D) 4 (E) Does not exist

9. $\lim_{x\to 0} (1+2x)^{\csc x} =$ (A) 0 (B) 1 (C) 2 (D) e (E) e^2

Free Response

Find the following limits. Show all work and use L'Hopital's Rule whenever possible. Express your answer in exact form. For example, if the value of the limit is π do not write 3.14

10.
$$\lim_{\theta \to 0} \frac{\arctan \theta}{2\theta}$$

11.
$$\lim_{\theta \to \pi^+} \frac{1}{\sin(\theta - \pi)}$$

12.
$$\lim_{x \to \pi^+} \frac{2x - 2\pi}{\sin(x - \pi)}$$

13.
$$\lim_{z \to \pi^+} \sin\left(\frac{1}{z - \pi}\right)$$

14.
$$\lim_{\alpha \to 0} \alpha \cdot \cot(2\alpha)$$

15.
$$\lim_{y \to \infty} y \cdot \ln \left(\frac{y+1}{y-1} \right)$$

$$16. \lim_{x \to 0^{-}} x^3 \cdot e^{1/x}$$

17.
$$\lim_{t \to \infty} \left(1 + \frac{3}{t} \right)^t$$

18.
$$\lim_{w\to\infty} \left(\ln w - \sqrt{w} \right)$$

19.
$$\lim_{t \to \infty} \frac{\sin\left(\frac{1}{t}\right)}{\ln t}$$

$$20. \lim_{v \to \infty} \frac{v^2}{e^{-v}}$$

21.
$$\lim_{x \to 0^{+}} \frac{x^{2} \cdot \sin\left(\frac{1}{x}\right)}{\sin x}$$

$$22. \lim_{u \to 0^+} \left(2^u - 1\right) \sqrt{u}$$

23.
$$\lim_{x \to \infty} (\ln|2x - 4| - \ln|x + 3|)$$

24.
$$\lim_{\theta \to 0} \pi^2 \frac{\tan 2\theta}{\theta \cos 2\theta}$$

- 25. (AP 2010-5) Consider the differential equation $\frac{dy}{dx} = 1 y$. Let y = f(x) be the particular solution to this differential equation with the initial condition f(1) = 0. For this particular solution, f(x) < 1 for all values of x.
 - (a) Use Euler's method, starting at x = 1 with two steps of equal size, to approximate f(0). Show the work that leads to your answer.

(b) Find $\lim_{x\to 1} \frac{f(x)}{x^3-1}$. Show the work that leads to your answer.

(c) Find the particular solution y = f(x) to the differential equation $\frac{dy}{dx} = 1 - y$ with the initial condition f(1) = 0.

26. (2016-BC4)

Consider the differential equation $\frac{dy}{dx} = x^2 - \frac{1}{2}y$.

- (a) Find $\frac{d^2y}{dx^2}$ in terms of x and y.
- (b) Let y = f(x) be the particular solution to the given differential equation whose graph passes through the point (-2,8). Does the graph of f have a relative minimum, a relative maximum, or neither at the point (-2,8)? Justify you answer.

(c) Let y = g(x) be the particular solution to the given differential equation with g(-1) = 2.

Find $\lim_{x\to -1} \left(\frac{g(x)-2}{3(x+1)^2} \right)$. Show the work that leads to your answer.

- (d) Let y = h(x) be the particular solution to the given differential equation with h(0) = 2.
 - (BC) Use Euler's method starting at x = 0 with two steps of equal size, to approximate h(1).
 - (AB) Use the linearization of h(x) at x = 0 to approximate h(1).