Worksheet 7.2—Parametric & Vector Accumulation
Show all work. No calculator except unless specifically stated.

Short Answer/Free Response

1. If \(x = e^{2t} \) and \(y = \sin(3t) \), find \(\frac{dy}{dx} \) in terms of \(t \).

2. Write an integral expression to represent the length of the path described by the parametric equations
\[
x = \cos^3 t \quad \text{and} \quad y = \sin^2 t \quad \text{for} \quad 0 \leq t \leq \frac{\pi}{2}
\]

3. For what value(s) of \(t \) does the curve given by the parametric equations \(x = t^3 - t^2 - 1 \) and \(y = t^4 + 2t^2 - 8t \) have a vertical tangent?
4. Find the equation of the tangent line to the curve given by the parametric equations \(x(t) = 3t^2 - 4t + 2 \) and \(y(t) = t^3 - 4t \) at the point on the curve where \(t = 1 \).

5. If \(x(t) = e^t + 1 \) and \(y = 2e^{2t} \) are the equations of the path of a particle moving in the \(xy \)-plane, write an equation for the path of the particle in terms of \(x \) and \(y \).

6. (Calculator) A particle moves in the \(xy \)-plane so that its position at any time \(t \) is given by \(x = \cos(5t) \) and \(y = t^3 \). What is the speed of the particle when \(t = 2 \)?
7. (Calculator) The position of a particle at time $t \geq 0$ is given by the parametric equations

$$x(t) = \frac{(t - 2)^3}{3} + 4 \quad \text{and} \quad y(t) = t^2 - 4t + 4.$$

(a) Find the magnitude of the velocity vector at $t = 1$.

(b) Find the total distance traveled by the particle from $t = 0$ to $t = 1$.

(c) When is the particle at rest? What is its position at that time?
8. (Calculator) An object moving along a curve in the \(xy \)-plane has position \((x(t), y(t))\) at time \(t \geq 0 \) with \(\frac{dx}{dt} = 1 + \tan(t^2) \) and \(\frac{dy}{dt} = 3e^{\sqrt{t}} \). Find the acceleration vector and the speed of the object when \(t = 5 \).

9. (Calculator) A particle moves in the \(xy \)-plane so that the position of the particle is given by \(x(t) = t + \cos t \) and \(y(t) = 3t + 2\sin t \), \(0 \leq t \leq \pi \). Find the velocity vector when the particle’s vertical position is \(y = 5 \).
10. (Calculator) An object moving along a curve in the xy–plane has position $(x(t), y(t))$ at time t with \[
\frac{dx}{dt} = 2\sin(t^3) \quad \text{and} \quad \frac{dy}{dt} = \cos(t^2) \text{ for } 0 \leq t \leq 4. \] At time $t = 1$, the object is at the position $(3, 4)$.

(a) Write an equation for the line tangent to the curve at $(3, 4)$.

(b) Find the speed of the object at time $t = 2$.

(c) Find the total distance traveled by the object over the time interval $0 \leq t \leq 1$.

(d) Find the position of the object at time $t = 2$.

Multiple Choice:

11. (Calculator) An object moving along a curve in the xy–plane has position $(x(t), y(t))$ with

$\frac{dx}{dt} = \cos(t^2)$ and $\frac{dy}{dt} = \sin(t^3)$. At time $t = 0$, the object is at position $(4, 7)$. Where is the particle when $t = 2$?

(A) $(-0.564, 0.989)$ (B) $(0.461, 0.452)$ (C) $(3.346, 7.989)$
(D) $(4.461, 7.452)$ (E) $(5.962, 8.962)$

12. (Calculator) The path of a particle moving in the plane is defined parametrically as a function of time t by $x = \sin 2t$ and $y = \cos 5t$. What is the speed of the particle at $t = 2$?

(A) 1.130 (B) 3.018 (C) $\langle -1.307, 2.720 \rangle$ (D) $\langle 0.757, 0.839 \rangle$ (E) $\langle 1.307, 2.720 \rangle$
13. For what values of \(t \) does the curve given by the parametric equations \(x = t^3 - t^2 - 1 \) and
\(y = t^4 + 2t^2 - 8t \) have a vertical tangent?

(A) 0 only (B) 1 only (C) 0 and 2/3 only (D) 0, 2/3, and 1 (E) No value

14. The distance traveled by a particle from \(t = 0 \) to \(t = 4 \) whose position is given by the vector
\(\vec{s}(t) = \langle t^2, t \rangle \) is given by

(A) \(\int_{0}^{4} \sqrt{4t + 1} \, dt \) (B) \(2 \int_{0}^{4} \sqrt{t^2 + 1} \, dt \) (C) \(4 \int_{0}^{4} \sqrt{2t^2 + 1} \, dt \) (D) \(4 \int_{0}^{4} \sqrt{4t^2 + 1} \, dt \)

(E) \(2\pi \int_{0}^{4} \sqrt{4t^2 + 1} \, dt \)