Worksheet 8.1—Polar Intro & Derivatives

Show all work. No calculator except unless specifically stated.

Short Answer

Convert the following equations to polar form.

1. \(y = 4 \)
2. \(3x - 5y + 2 = 0 \)
3. \(x^2 + y^2 = 25 \)

Convert the following equations to rectangular form.

4. \(r = 3\sec \theta \)
5. \(r = 2\sin \theta \)
6. \(\theta = \frac{5\pi}{6} \)

For the following, find \(\frac{dy}{dx} \) for the given value of \(\theta \).

7. \(r = 2 + 3\sin \theta \), \(\theta = \frac{3\pi}{2} \)
8. \(r = 3(1 - \cos \theta) \), \(\theta = \frac{\pi}{2} \)
9. \(r = 4 \sin \theta \), \(\theta = \frac{\pi}{3} \)

10. \(r = 2 \sin(3\theta) \), \(\theta = \frac{\pi}{4} \)

11. Find the point of horizontal and vertical tangency for \(r = 1 + \sin \theta \). Give your answers in polar form \((r, \theta)\).
Make a table (of values, not one at which to eat) and sketch the graph.

12. \(r = 2 - 2 \sin \theta \)
13. \(r = 1 + 2 \cos \theta \)
14. \(r = 4 \cos(2\theta) \)
15. \(r^2 = 4 \sin(2\theta) \)

Multiple Choice

16. If \(a \neq 0 \) and \(\theta \neq 0 \), all of the following must represent the same point in polar coordinates *except* which ordered pair?

(A) \((a, \theta)\)
(B) \((-a, -\theta)\)
(C) \((-a, \theta - \pi)\)
(D) \((-a, \theta + \pi)\)
(E) \((a, \theta - 2\pi)\)
17. Which of the following gives the slope of the polar curve \(r = f(\theta) \) graphed in the \(xy \)-plane?

(A) \(\frac{dr}{d\theta} \) (B) \(\frac{dy}{d\theta} \) (C) \(\frac{dx}{d\theta} \) (D) \(\frac{dy}{dx} \cdot \frac{d\theta}{d\theta} \) (E) \(\frac{dy}{dx} \cdot \frac{dr}{d\theta} \)

18. Which of the following represents the graph of the polar curve \(r = 2 \sec \theta \)?

(A)
(B)
(C)
(D)
(E)

\[y \]
\[x \]
\[o \]
\[1 \]
\[2 \]