Lesson 3—Skills 6-10

Skill 6: Inverse Variation or Inverse Proportion

If y is inversely proportional to x, then

$$
x \times y=k, \text { where } k \text { is a nonzero constant }
$$

or

$$
x \times y=x_{1} \times y_{1}=x_{2} \times y_{2}=\cdots=k
$$

In the $x y$-plane, the graph of $y=f(x)$ is

1) $k>0$

2) $k<0$

Example 6:

(a) The cost of hiring a bus for a trip to Happymathland is $\$ 400$. If 25 people go on the trip, what is the cost per person?

$$
\begin{aligned}
& 400=k \\
& 25 x=400 \\
& x=\frac{400}{25}=16
\end{aligned}
$$

(b) If 4 typists can complete the typing of a manuscript in 9 days, how long would it take 12 typists to complete the manuscript?

$$
\begin{gathered}
4(9)=36=k=12 x \\
12 x=36 \\
x=3
\end{gathered}
$$

Skill 7: Special Triangles
(A)

$$
\text { Area }=\frac{1}{2} b h
$$

Example 7:

(a) If $A C=10$, what is the area of $\triangle A B C$
$A C=10$ so $A M=5$
$B M=5 \sqrt{3}$
So area $=\frac{1}{2}(10)(5 \sqrt{3})$
$=25 \sqrt{3}$
(c) An equilateral triangle is inside a circle. If the radius of the circle is 10 , what is the area of
$\triangle A B C ?$
area $=\frac{1}{2}(10 \sqrt{3})(5)=25 \sqrt{3}$
of 1Δ
OR Area of big \triangle

$$
\begin{aligned}
& =\frac{1}{2}(10 \sqrt{3})(15) \\
& =75 \sqrt{3}
\end{aligned}
$$

we have 3 of these
triangles, So total

$$
\begin{aligned}
& =3(25 \\
& =75 \sqrt{3}
\end{aligned}
$$

(b) If $A B=A C$ and $\angle A B C=45^{\circ}$, what is the area

$$
\begin{aligned}
& \text { of } \triangle A B C ? \\
& \text { Area }=\frac{i}{2}\left(\frac{8}{\sqrt{2}}\right)\left(\frac{8}{\sqrt{2}}\right)=\frac{32}{2}=16
\end{aligned}
$$

$$
\text { Area }=\frac{1}{2}\left(\frac{8}{\sqrt{2}}\right)\left(\frac{8}{\sqrt{2}}\right)=\frac{32}{2}=16
$$

(C)

5
\qquad

$$
\infty
$$

\qquad

Skill 8: Exponents

$5^{2}=25\left\{\begin{array}{l}5=\text { base } \\ 2=\text { exponent } \\ 25=\text { power }\end{array}\right.$

The Operations of Exponents

1) $a^{m} a^{n}=a^{m+n}$
2) $\left(a^{m}\right)^{n}=a^{m n}$
3) $(a b)^{n}=a^{n} b^{n}$
4) $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$
5) $a^{-n}=\frac{1}{a^{n}}$
6) $a^{\frac{m}{n}}=\sqrt[n]{a^{m}}$

Example 8:

(a) If $n=-1$, evaluate $\frac{(2 n)^{2}}{3} \div(-2)^{n}$
(b) If $u^{5 / 3}=\stackrel{v^{-15}}{v^{-15}}$ what is v in terms of u ? $\quad V=$?

$$
\begin{aligned}
& \frac{(2(-1))^{2}}{3} \div(-2)^{-1} \\
& \frac{4}{3} \div\left(-\frac{1}{2}\right) \\
& \frac{4}{3}\left(-\frac{2}{1}\right)=-\frac{8}{3}
\end{aligned}
$$

(c) x, y, and z are three positive integers. If

$$
\begin{aligned}
& x^{-z}=\frac{1}{27} \text { and }(x-y)^{1 / 2}=4, \text { what is the value of } \\
& \frac{1}{x^{2}}=\frac{1}{27}\left\{\begin{array}{c}
\left.(x-y)^{1 / 2}\right)^{2}=(4)^{2} \\
x-y=16
\end{array}\right.
\end{aligned}
$$

$$
x^{z}=27 \quad y=x-16
$$

$$
\left.\begin{array}{r}
x=27, z=1 \\
\text { or } x=3, z=3
\end{array}\right\} \text { or } y=3-16=\left(-\frac{1}{3} y=27-16=11\right.
$$

Geometric probability is the probability of dealing with the areas of regions instead of the number of outcomes. The equation becomes

$$
\text { Probability }=\frac{\text { Favorable region }}{\text { Area of total region }}
$$

Example 9:

If you are throwing a dart at the rectangular target above and are equally likely to hit any point on the target, what is the probability that you will hit the small square?

$$
\begin{aligned}
& \text { Area of small square }=s^{2}=25 \mathrm{~cm}^{2} \\
& \text { Area of big rectangle }=25(10)=250 \mathrm{~cm}^{2} \\
& \text { Probability }=\frac{25}{250}=\frac{1}{10} \text { or } 0.1
\end{aligned}
$$

Skill 10: Domain and Range

The domain of a given function is the set of "input" values for which the function is defined. In a representation of a function in the $x y$-plane, the domain is represented on the \underline{x}-axis (or abscissa).

The range of a function is the set of all "output" values produced by that function. Sometimes it is called the image of the domain of the function. Range is also occasionally used to indicated the difference between the larges and smallest numbers in a set of real-valued data. In a representation of a function in the $x y$-plane, the range is represented on the y-axis (or ordinate).

Example 10:

(a) Determine the domain and range for

$D:\{x \mid x \geqslant 0\}$ or $x \geqslant 0$
$R \cdot\{y \mid y \geqslant 0\}$ or $y \geqslant 0$
(b) Determine the domain and range for

$D:\{x \mid x \neq 0\}$ or $x \neq 0$

Page 4 of 5

$$
R:\{y \mid y \neq 0\} \text { or } y \neq 0
$$

(c) Find the domain of $f(x)=\frac{\sqrt{x+3}}{x-1}$

(d) Find the domain of $h(x)=4-2 \sqrt{5-3 x}$

$$
\begin{aligned}
& 5-3 x \geqslant 0 \\
& -3 x \geqslant-5 \\
& x \leq \frac{5}{3}
\end{aligned}
$$

