Lesson 11—Skills 46-50

Skill 46: Average Speed

Average speed is the total distance travelled by the total time taken.

$$
\text { Average speed }=\frac{\text { Total distance travelled }}{\text { Total time taken }}
$$

and

$$
\text { Distance }=\text { Rate } \times \text { Time so Time }=\frac{\text { Distance }}{\text { Rate }}
$$

It's helpful in these problems to let the one-way distance be anything, say D, so that the total two-way trip is $2 D$.

Example 46:

(a) If you travel from city A to city B at 40 miles per hour, and then you travel back at 50 miles per hour, what is the average speed for the whole trip?
The aug will be less than $\frac{40+50}{2}=45$ since more time is spent driving at tit 2.5 speed.
(b) If you travel from city A to city B in 6 hours, but in the first two hours you drove a constant speed of 50 miles per hour, and in the last 4 hours you kept your speed at 60 miles per hour, what is the average speed of your trip?
Dist driving $50=2(50)=100$
$\frac{2 D}{\frac{D}{40}+\frac{D}{50}\left(\frac{2006}{2000}\right)=\frac{4000 D}{50 D+408}=\frac{4000 \pi,}{907}}=\begin{aligned} & =\frac{400}{9} \\ & \simeq 44.444 \mathrm{mph}\end{aligned}$

Skill 47: Factoring

Factoring is to write an expression as a product of factors.
For SAT questions, the following factorings are needed

- $a^{2}+2 a b+b^{2}=(a+b)^{2}$
- $a^{2}-2 a b+b^{2}=(a-b)^{2}$
- $a^{2}-b^{2}=(a+b)(a-b)$
- $a^{2}-2 a-3=(a-3)(a+1)$ *or similar "target sum/target product" problem

Example 47:

(a) If $(2 x-8)(3 x+5)=a$, then $(12-3 x)(15 x+25)=$ what?

$(2 x-8)(3 x+5)=a$
$2(x-4)(3 x+5)=a$
$(12-3 x)(15 x+25)$

$=-3(x-4)(5)(3 x+5)$
$\begin{aligned}(-15)(x-4)(3 x+5) & =\frac{1}{2 a}(-15) \\ & =-\frac{15}{2} a 0 .-7.5 a\end{aligned}$
(b) If $x^{2}-y^{2}=24$, where x and y are positive integers and $x>y$, what is one possible value of x ?

Skill 48: Prime and Divisibility

To determine if a number is prime or composite

1. Find all the factors of the number.
2. If the number has only two factors, 1 and itself, then it is prime.
3. If the number as more than two factors, then it is composite.

A number x is divisible by another number y, if y is a factor of x. That is $\frac{x}{y}$ is an integer or $x \div y$ has no remainder.

Example 48:

$$
\begin{aligned}
& =2^{2} \\
& \text { (b) If a number } n \text { is divisible by } 3,4 \text {, and } 7 \text {, which } \\
& \text { of the following is also divisible by these } \\
& \text { e } 2^{2 \cdot 2} \\
& \begin{array}{l}
\text { numbers? } \\
\text { i) } n+21 \text { is divisible by all combos o } 33,4,7 \\
\text { fochors: } 3,4,7,12,21,28,84,6,8,14,24,56 \text {, } \\
\text { of } 21 \text { inuliple }
\end{array} \\
& \text { (} n+84 \text { is a man (title of } 84 \text {) } \\
& \text { iii) } 21 n \\
& \text { (21n is a multiple of 21) } \\
& \text { (} 6 n \text { is ammetiple of } 6 \text {) } \\
& \text { (v) } 6 n+252 \\
& 6 n \text { is multiple of } C_{y} \text { and } 252 \text { :samatiple of } 84=3.84 \\
& \text { Small are divisible by } 3,4, \& 7
\end{aligned}
$$

Divisible by 2 ifends in even
Divisible by 5 if ends in 0 or 5 Divisible by 3 if Sum al digits is divisible by 3 so 323323 is not divisible by 2,3, or

Skill 49: Rate of Work
Let's assume we have two workers: A and B.

1) Worker A can finish $\mathbf{1}$ job in a hours when working alone at a rate of $\frac{1}{a}$.
2) Worker B can finish $\mathbf{1}$ job in b hours when working alone at a rate of $\frac{1}{b}$.

If two workers are working together, the number of hours they need to complete the job is given by

Worker	Rate	Combined Rate	Combined Time
A	$\frac{1}{a}$	$\frac{1}{a}+\frac{1}{b}$	$\frac{1}{\frac{1}{a}+\frac{1}{b}}$
B	$\frac{1}{b}$		

For these types of problems where $\mathbf{1}$ job is done and to be done, Rate and Time are reciprocals!!

$$
\text { Rate }=\frac{1}{\text { Time }} \quad \text { and } \quad \text { Time }=\frac{1}{\text { Rate }}
$$

So the combined time is

$$
\text { Time }=\frac{1}{\frac{1}{a}+\frac{1}{b}}=\frac{a b}{a+b}
$$

Example 49:

(a) Worker A can do a job in 8 hours. Worker B can do a job in 6 hours. How quickly can the job be done if they both work together?
$\frac{1}{\frac{1}{6}+\frac{1}{6}}=\frac{1}{\frac{3}{24}+\frac{4}{24}}=\frac{1}{7 / 24}=\frac{24}{7}$
$=3.429 \mathrm{hrs}$
(c) If it takes 6 dogs 5 minutes to mark 10 fire hydrants, how long will it take 2 dogs to mark 12 fire hydrants?
6 dogs per Sin per 10 hydrant
$=6$ dogs per $\frac{5}{10}$ min per / hydrant
$=6$ dogs per $\frac{1}{2}$ min per 1 hydrant
$=3$ Dog. Min per 1 hydrant

Skill 50: Parallel Lines

If a set of parallel lines are cut by a transversal, each of the parallel lines has 4 angles surrounding the intersections.

$\angle 1 \cong \angle 4$ and $\angle 2 \cong \angle 3$: Vertical Angles
$\angle 2 \cong \angle 6$ and $\angle 4 \cong \angle 8$: Corresponding Angles
$\angle 3 \cong \angle 6$ and $\angle 4 \cong \angle 5$: Alternate Angles
$\angle 3+\angle 5=180^{\circ}$ and $\angle 4+\angle 6=180^{\circ}$: Sum of interior angles on same side is 180°

Example 50:

(a) In the figure above, m is parallel to l and p is perpendicular to n. Find the value of $a+b+c$. $a+b=180^{\circ}, c=90^{\circ}$ $80 a+b+c=180^{\circ}+90^{\circ}=270^{\circ}$

(b) In the figure above, if ${ }^{a \| b}$, what is the value of $\begin{aligned} & x ? \\ & x=180-70-40=180^{\circ}-110^{\circ} \\ &=70^{\circ}\end{aligned}$
$(12)=125-80=45=(1)=3$
(10) $=180-45-80=55$
(b) $=180-45-80=55$
(2) $=180-45=135=4$
(c) Find the size of all the numbered angles.

$$
\begin{aligned}
& 7=180-55=125=0 \\
& 9=55 \\
& (5)=125-45=80=11
\end{aligned}
$$

