Lesson 11—Skills 46-50

Skill 46: Average Speed

Average speed is the total distance travelled by the total time taken.

$$
\begin{gathered}
\text { Average speed }=\frac{\text { Total distance travelled }}{\text { Total time taken }} \\
\text { and } \\
\text { Distance }=\text { Rate } \times \text { Time so Time }=\frac{\text { Distance }}{\text { Rate }}
\end{gathered}
$$

It's helpful in these problems to let the one-way distance be anything, say D, so that the total two-way trip is $2 D$.

Example 46:

(a) If you travel from city A to city B at 40 miles pe hour, and then you travel back at 50 miles per hour, what is the average speed for the whole trip?
(b) If you travel from city A to city B in 6 hours, but in the first two hours you drove a constant speed of 50 miles per hour, and in the last 4 hours you kept your speed at 60 miles per hour, what is the average speed of your trip?

Skill 47: Factoring

Factoring is to write an expression as a product of factors.
For SAT questions, the following factorings are needed

- $a^{2}+2 a b+b^{2}=(a+b)^{2}$
- $a^{2}-2 a b+b^{2}=(a-b)^{2}$
- $a^{2}-b^{2}=(a+b)(a-b)$
- $a^{2}-2 a-3=(a-3)(a+1) \quad$ *or similar "target sum/target product" problem

Example 47:

(a) If $(2 x-8)(3 x+5)=a$, then
$(12-3 x)(15 x+25)=$ what?
(b) If $x^{2}-y^{2}=24$, where x and y are positive integers and $x>y$, what is one possible value of x ?

Skill 48: Prime and Divisibility

To determine if a number is prime or composite

1. Find all the factors of the number.
2. If the number has only two factors, 1 and itself, then it is prime.
3. If the number as more than two factors, then it is composite.

A number x is divisible by another number y, if y is a factor of x. That is $\frac{x}{y}$ is an integer or $x \div y$ has no remainder.

Example 48:

(a) Determine if 323323 is divisible by $2,3, \& 5$.
(b) If a number n is divisible by 3,4 , and 7 , which of the following is also divisible by these numbers?
i) $n+21$
ii) $n+84$
iii) $21 n$
iv) $6 n$
v) $6 n+252$

Skill 49: Rate of Work

Let's assume we have two workers: A and B.

1) Worker A can finish $\mathbf{1}$ job in a hours when working alone at a rate of $\frac{1}{a}$.
2) Worker B can finish $\mathbf{1}$ job in b hours when working alone at a rate of $\frac{1}{b}$.

If two workers are working together, the number of hours they need to complete the job is given by

Worker	Rate	Combined Rate	Combined Time
A	$\frac{1}{a}$	$\frac{1}{a}+\frac{1}{b}$	$\frac{1}{\frac{1}{a}+\frac{1}{b}}$
B	$\frac{1}{b}$		

For these types of problems where $\mathbf{1}$ job is done and to be done, Rate and Time are reciprocals!!

$$
\text { Rate }=\frac{1}{\text { Time }} \quad \text { and } \quad \text { Time }=\frac{1}{\text { Rate }}
$$

So the combined time is

$$
\text { Time }=\frac{1}{\frac{1}{a}+\frac{1}{b}}=\frac{a b}{a+b}
$$

Example 49:

(a) Worker A can do a job in 8 hours. Worker B can do a job in 6 hours. How quickly can the job be done if they both work together?
(c) If it takes 6 dogs 5 minutes to mark 10 fire hydrants, how long will it take 2 dogs to mark 12 fire hydrants?
(b) Tom can finish a job in 10 hours. When Buford works together with Tom, they can finish the job in 5 hours. How long does it take Buford to do the job if he works alone?

Skill 50: Parallel Lines

If a set of parallel lines are cut by a transversal, each of the parallel lines has 4 angles surrounding the intersections.

$\angle 1 \cong \angle 4$ and $\angle 2 \cong \angle 3$: Vertical Angles
$\angle 2 \cong \angle 6$ and $\angle 4 \cong \angle 8$: Corresponding Angles
$\angle 3 \cong \angle 6$ and $\angle 4 \cong \angle 5$: Alternate Angles
$\angle 3+\angle 5=180^{\circ}$ and $\angle 4+\angle 6=180^{\circ}$: Sum of interior angles on same side is 180°

Example 50:

(a) In the figure above, m is parallel to l and p is perpendicular to n. Find the value of $a+b+c$.

(b) In the figure above, if $a \| b$, what is the value of x ?

(c) Find the size of all the numbered angles.

