
PROCESSING
INTRODUCTION

PRINTING TO THE
CONSOLE
On the first blank line, type:

print("Hello World!");

or

print(a number);

Ignore the gray window and look at

the black bar at the bottom

This white side will become

illustrations when we do

concepts more abstract.

Typing isn't too abstract so

instead enjoy whatever this is :)

WHAT WE JUST
DID
The whole print() thing is called a

function

We first type the command we need,

and then put all the data we need the

function to work with inside the ()s

(and then end it with a semicolon ;))

When we want the computer to take

our letters word for word, we need to

put ""s around it or else the computer

will think it's a command

VARIABLES
A variable is a place that can store a

number (and a few other things). You

can make the variable store a

different number later. You are able

to name the variable so that you can

use it whenever you need easily.

Variable Types We Use A Lot:

Integer (Whole Numbers)

Float (Whole Numbers & Decimals)

Boolean (True or False)

String (Words & Letters)

HOW TO MAKE A
VARIABLE

To make a variable, you first write out

the type of variable you want, then the

name you want it to be, an equals sign,

and then the value:

Examples with the common type:

int carl = 5; (Integer)

float sam = 4.4; (Double)

boolean isCorrect = true; (Boolean)

String someText = "I am some text";

(String)

Variables are named likeThisWay

USING VARIABLES
You can treat the variable while coding

like you would treat a number, but

instead, you type its name.

You can use one inside parenthesis for

functions or use one to add:

String someText = "Hello World!";

println(someText);

This is why we need ""s when we want

to type something literally. If it's not, the

computer thinks it's a variable.

CHANGING UP
VARIABLES
Variables can be equal to creative

things. You can set them equal to

another variable, or equal to an

equation, or an equation with another

variable.

int sally = 3;

int carl = sally + 5;

Carl is now 8.

After a variable is made, you can

change it:

carl = 5;

Now carl is 5

TRICKS TO CHANGE
VARIABLES
int carl = 0;

carl++; (Add one to carl)

carl--; (Subtract one from carl)

You can add a variable to itself like:

carl = carl + 2 (Add two to carl)

carl += 2 (Add two to carl)

SHAPES!!!
The way to draw a rectangle or a circle

is the same as to print to the console, it

just has a new name and different data

in the ()s

rect(XPos, YPos, length, width);

ellipse(XPos, YPos, length, width);

All of the shapes and all of the cool

functions in processing can be found at:

processing.org/reference

OTHER USEFUL
FUNCTIONS
size(length, height) - Change the size

of the window

surface.setResizable(true) - Make the

window resizable

fill(number) or fill(r, g, b) - Color for

the next objects you make

(Out of 255 for each)

noStroke() - Make shapes not have

outlines

OTHER USEFUL
FUNCTIONS
background(number) or

background(r,g,b) - Color the

background of the program

println(text or number) - Makes a

new line for every text printed

Tip :

("Hello " + " world") - The + can

combine text in one line by

using the plus, it won't add

them it will combine them.

Include spaces in the text

DRAW AND SETUP
Methods are blocks of code grouped

together and labeled by a name

Draw and setup are two methods that

you can make that each have a

separate purpose

The program will run through all the

code in the setup() code block or

method one time when the program

starts

The program will keep repeating, or

loop, through the code in draw()

forever

HOW TO USE
DRAW AND SETUP
void setup(){

 size(800, 800);

 println("Hello for the first time!");

}

void draw(){

 println("HELLO AGAIN! HELLO!");

}

All your code goes inside the brackets.

Don't worry about void

VARIABLES WITH
METHODS
If a variable is made inside of a method

(again, a code block like draw()), then it

can only be used inside that method.

This is called a local variable.

If a variable is made outside of all

methods, (like at the top of the

program) then it can be used and

changed by all methods. These are

called global variables.

A LITTLE BIT MORE
ON VARIABLES
There are some VERY useful variables

that are already made by default

(you don't have to make them, they

just exist and you can use them):

width & height - The length and width

of the program's window

mouseX & mouseY - The current

position of the mouse on the

program's coordinate grid

COORDINATE
SYSTEM
The coordinate system looks like the

picture on the right. There are no

negatives that appear on the screen, so

if you set it a rectangle to a negative x

or y value some of it will be off the

screen.

The X and Y start in the top left

The X increases as you go right

The Y increases as you go down

FIRST ANIMATION
We want to make a circle go from the

left side of the screen to the right. We

can do this with all the current

information, and I'll make it easier

with a few pointers

I'll have a few questions to help, and

then we'll do it together

It's okay if you don't get it or don't

know where to start. The more we go

over this stuff they better

you get at figuring how to

do it. Stay calm

PT 1 - SETUP THE
PROGRAM
Let's first make the base for the

program. Start with our base setup:

void setup(){

size(800, 800);

background(100);

}

void draw(){

}

This will make a gray 800x800 window

PT 2 - MAKING THE
CIRCLE
The proper way to write a circle, or

the syntax, is:

ellipse(XPos, YPos, length, width);

Since we want a circle, we'll want the

same length and width, so let's make

it 100x100

ellipse(XPos, YPos, 100, 100);

Length starts on the left

side, not the center of

the circle

PT 2 - MAKING
THE CIRCLE II
ellipse(XPos, YPos, 100, 100);

Now for the coordinates, the X and Y

are the center pixel of the circle. Let's

put it in the middle of the left side of the

screen by taking the height of the

program (800) and dividing by 2 (400),

and having X equal 0.

ellipse(0, 400, 100, 100);

ellipse(0, height/2, 100, 100); would

work also

PT 3 - PROBLEM
SOLVING
Now we have a circle that doesn't

move. There is no function we know

that will move it to the right, so we

have to think more creatively. What

can we do to make the illusion of

movement based on the ellipse's data

we have to put in (parameters)?

HINT:

What happens on a coordinate grid

when something goes the right?

PT 3 - PROBLEM
SOLVING II
Now what could we do in order to make

the X position of the circle keep going

right?

Hint:

How could we replace this concrete

number on the XPos with one that

changes?

Hint:

What can we do to constantly add to

the variable's number?

PT 4 - MAKING THE
VARIABLE
Let's make our variable xPos. We

need to have the variable increase by

1 constantly, which we can do using

the draw() method. So our program

will be -

void setup(){

size(800, 800);

background(100);

}

void draw(){

int xPos = 0;

xPos++;

ellipse(xPos, 400, 100, 100);

}

PT 5 -
TROUBLESHOOTING
Why does the circle not move?

Hint:

Look at where xPos is being made and

what we're telling the computer

program

PT 5 -
TROUBLESHOOTING
Why is that streak happening? Oh

wait, did we even make the circle

move? What did we really do when

we used the ellipse() function?

What can we do to fix this?

Hint:

If we make a new circle every time,

how can we go over the previous

one?

PT 6 - GET MORE
CREATIVE
What other things would you like to

play around with to make this more

interesting? What would you do to

make it look better? How could you

change how the circle moves?

As we learn how to make a computer do

something if something happen, we can

start to become even more creative

PROCESSING
INTRODUCTION

