
PROCESSING  
CLASSES & OBJECTS

( ( );



CLASS RECAP
Classes are like the manufacturing 

machines in a factory. The machine is 

made one time, but they can create a 

bunch of objects or things with the 

same properties just by hitting a 

button. Let's make this machine! This 

next part is for most people the 

hardest concept to grasp. Hang on! 

It's all easier after this.



MAKING TABS
Click on the arrow next to tab of 

the page you're on. Click "New Tab" 

Make a new tab with a name you 

want. Now we can start 

programming a class! 

You really can just do all the code 

on one page, but it's a lot easier to 

navigate with this better organized 

separate panel. 



CLASS CREATION
class Blob { 

float xPos, yPos, xSpeed, ySpeed, 

bColor; 

Blob(){ 

 xPos = random(width); 

 yPos = random(height); 

xSpeed = random(-10, 10); 

ySpeed = random(-10, 10); 

bColor = random(255); 

} 

void display() { 

 fill(bColor); 

 ellipse(xPos, yPos, 100, 100); 

} 



CLASS CONT
void move() { 

 xPos += xSpeed; 

 yPos += ySpeed; 

  

 if (xPos < 0 || xPos > width) { 

  xPos = random(width); 

  xSpeed = random(-10, 10); 

  bColor = random(255); 

 } 

  

 if (yPos < 0 || yPos > height) { 

  yPos = random(height); 

  ySpeed = random(-10, 10); 

  bColor = random(255); 

 } 

} 

}



USING OUR CLASS
On our first tab : 

Blob firstCircle; 

void setup() { 

  firstCircle = new Blob(); 

} 

void draw() { 

 firstCircle.display(); 

 firstCircle.move(); 

}



LOOKING AT OUR 
CLASS
class Blob { 

... 

} 

... 

firstCircle = new Blob(); 

This boxes up all the methods we want 

in our class. All of the variables and 

methods inside this class will be able to 

be changed within each object: 



MODIFYING
int array[] = new int[5]; 

 This array now stores 5 int values 

that can be changed on their own in 

one neat package. Here's how: 

array[1] = 40; 

array[2] = 4; 

array[3] = 4; 

array[4] = 9999; 

array[5] = 30; <- THIS WON'T WORK!



ZERO INDEX
It's a bit strange, but arrays are zero 

indexed in all programming languages. 

This means the array's first variable or 

index starts at 0, not 1 like we normally 

think. Because of this, even though we 

made the array 5 variables long, we 

can't use [5] because it doesn't exist.  

[0], [1], [2], [3], [4] is 5 long! 

Now println(array.length); will still say 5 

long, because it really is, but we need to 

remember that the indexes start at 0 

and go from there, not 1. 



EDITING VALUES
We can use a for loop to set values for 

each array in one line of code: 

for (int i = 0; i < array.length; i++){ 

  array[i] = 40; 

} 

We can replace the [3] with a 

variable, in this case, the for loop 

variable and give each a value so 

quickly! 



OOP
OOP stands for Object Oriented 

Programming. This changes our idea of 

code from being actions in a sequence 

to making objects with abilities that we 

define. This means we won't be 

changing the code within methods, but 

rather, we will be creating our own 

methods. Better yet, we'll be creating 

objects that store all these methods!



MAKING METHODS
Methods are blocks of code that are 

grouped together. So far, we learned 

that titling a group of code a certain 

thing can do a certain task. This isn't 

the main use of methods. When we 

create methods, we create blocks of 

code that aren't used until we tell the 

program to use it.  

 



METHOD EXAMPLE
void setup(){ 

 size(800, 800); 

} 

void makeCircle(){ 

  ellipse(width/2, height/2, 100, 100); 

} 

If we run the code we'll see that nothing 

happens. Now put makeCircle(); in the 

setup()'s {}s 

Now suddenly it makes a circle!



RETURN AND VOID
I apologize. For the longest time, I 

may have left you wondering what 

void does. It's just there! Now I feel 

you're ready to be taught. 

When you put void before the 

method name, you're saying the 

method will not return a value. ... 

What does returning a value mean? 

Well, let's do an example 



RETURNING A VALUE
void setup(){ 

 size(800, 800); 

 float thing = makeCircle(); 

 println("Thing is " + thing); 

} 

float makeCircle(){ 

  ellipse(width/2, height/2, 100, 100); 

  float num = random(200); 

  println("num is " + num); 

  return num; 

} 



RETURNING VALUE
Woah! We set a variable equal to a 

method! The return replaces the 

method wherever it is called (told to 

execute, makeCircle(); in setup) with 

the variable that was returned (thing 

after the return line) 

Now in the method line, we have to 

say what type of variable will be 

returned, so in this case we will put 

float (and not void!). If we returned a 

string value, we would put String, int 

int, boolean boolean, etc.



BACK TO THE VOID
Let me repeat void. Void is the word we 

put in front of the method name 

whenever we don't want to return a 

value. In other words, when we put void, 

there will be no return statement. We 

can't set any value equal to the method 

like before if it's void, because nothing 

will be returned. Void is used to do a 

task, but have no information gained 

back from that. Just do whatever is in 

your method, then bug off! 



... WHY ()S?
Double apology. I now feel ready to 

tell you why we put ()s on all these 

things.  

As you know, sometimes we put 

values in these (), like color(255), 

size(800, 800), rect(x,y,l,w); 

This data we put inside ()s is called 

the parameters. We can put data in 

the parameters to be used. What 

does this mean?



PARAMETERS
void setup() { 

  saySomething("HI!"); 

} 

void saySomething(String word) { 

  println(word); 

} 

Change the HI! to some other word. As 

we see, the word variable inside 

saySomething changes to whatever we 

put inside the ()s



PARAMETERS CONT
We see that in saySomething, instead 

of putting (), we put (String word) 

This says that whenever this method 

is called, whatever is put inside the 

()s will be this variable. It's like saying 

String word = "HI!" but only inside the 

saySomething method. From here, we 

can use the word variable just like 

normal. Again, this can be any value.



CLASSES
For right now, a class is a collection of 

methods grouped together. From here, 

you can create what is called an object. 

First, here's the definition : 

An object is an instance (a new 

creation) of a class that has all the 

methods and variables within a class.

If you're like me when you first read 

this, you have no idea what this means. 

Luckily, analogies exist for a reason! 

Use them!



OBJECT ANALOGY

Let's imagine we're in a factory and 

there's a bunch of machines. 

Every machine has a button that says 

"New", a conveyer belt on the other 

end that spits out the finished 

product, and a big metal box that 

creates the thing it's designed for 

whenever you hit the New button. 

This metal box thing is the class, and 

the thing it spits out is the object.



ANALOGY CONT
You only make this metal box once, but 

you can suddenly create an infinite 

amount of objects (things) that come 

out from this. All of these that come 

from the same machine have the same 

characteristics, perhaps the ability to 

move on command, a color, and an X 

and Y, and the ability to show itself on 

screen. 

You can mess about with each object 

after it's created. The class' purpose is 

just to make the object. Knowing this, 

let's ignore the proper definition and 

move on to creating a class



PT 1 - ESTABLISH 
GOAL/IDEA
Let's first see in a word sense what 

we're going to add. We want to say if 

the center of the circle (we can change 

it to the side later) goes past either side

of the screen, we want it to reverse 

directions ... how could we say the first 

line of the if statement using one of the 

circle's variables? 

 Which variable will hit the left and  

right side of the screen? 

 



PT 2 - MAKING THE 
IF STATEMENT
We want to add our if to the (draw()

/ setup()) method (Circle one!) 

This is what it looks like: 

if (xPos > width || xPos < 0)  

  (reverse circle's direction) 

This is saying "If the X of the circle is 

less than or greater than the window 

size, reverse its direction so the circle 

is going back into the  

window 



PT 3 - REVERSING 
THE DIRECTION
Now we need to make the circle head in 

the other direction until we hit that side, 

then back again, then back again 

forever. Essentially, whenever the ball 

hits the wall, we want it add a number 

that will go in the opposite direction of 

where it's currently going. The best way 

to illustrate how we'll do this is with a 

math example I'll show now.  



PT 3 - REVERSING 
THE DIRECTION 
So we need to add a number to the 

xPos the opposite of what is currently 

being added. Can we just say if the xPos 

is greater than the width we just 

subtract 10? Why? 

What can we use that can change, and 

can be added to the xPos depending on 

where the xPos is?



PT 4 - MAKING 
THE VARIABLE
Let's make a new variable let's say 

speed, directly below our xPos 

coordinate. 

int speed = 10; 

Now, using what we covered, how can 

we say that if the xPos is greater than 

or less than the sides, we reverse the 

directions of speed.



PT 5 - THE FINAL 
PART
We can make the if statement like 

this: 

if (xPos < 0 || xPos > width) 

 speed *= -1; 

Now insert this in the draw function, 

and see what happens



PROCESSING 
LOGIC


