CALCULUS WORKSHEET 1 ON LIMITS

1. Explain in your own words what is meant by the equation

$$\lim_{x\to 2} f(x) = 5.$$

Is it possible for this statement to be true and yet f(2) = 3? Explain.

2. Explain what it means to say that

$$\lim_{x \to 1^{-}} f(x) = 3$$
 and $\lim_{x \to 1^{+}} f(x) = 7$.

In this situation, it is possible that $\lim_{x\to 1} f(x)$ exists?

- 3. Explain the meaning of each of the following.
- (a) $\lim_{x \to -3} f(x) = \infty$
- (b) $\lim_{x \to 4^+} f(x) = -\infty$

4. 1	4. For the function f whose graph is given, state the value of the given quantity, if it exists. If it						
(a)	$\lim_{x \to 1} f(x) =$	(b) $\lim_{x \to 3^{-}} f(x) =$	(c) $\lim_{x \to 3^+} f(x) =$				
(d)	$\lim_{x\to 3} f(x) =$	(e) $f(3) =$	(f) $\lim_{x \to -2^{-}} f(x) =$				
(g)	$\lim_{x\to -2^+} f(x) =$	(h) $\lim_{x\to -2} f(x) =$	(i) $f(-2) =$				

5. For the function f whose graph is shown, state the following. (a) $\lim_{x \to 3} f(x) =$ (b) $\lim_{x \to 7} f(x) =$

- (c) $\lim_{x \to -4} f(x) =$ (d) $\lim_{x \to -9^{-}} f(x) =$
- (e) $\lim_{x \to -9^+} f(x) =$
- (f) The equations of the vertical asymptotes

TURN--->>>

6. A patient receives a 150-mg injection of a drug every four hours. The graph shows the amount f(t) of the drug in the bloodstream after t hours. Find

 $\lim_{t \to 12^{-}} f(t) \text{ and } \lim_{x \to 12^{+}} f(t)$

and explain the significance of these one-sided limits.

7. Sketch the graph of the function $f(x) = \frac{1}{(1+2^{1/x})}$ and state

the value of each limit, if it exists. If it does not exist, explain why.

(a) $\lim_{x \to 0^{-}} f(x) =$ (b) $\lim_{x \to 0^{+}} f(x) =$ (c) $\lim_{x \to 0} f(x) =$

_8.

Sketch the graph of the following function and use it to determine the values of a for which $\lim_{x \to a} f(x)$ exists.

$$f(x) = \begin{cases} 2-x, & x < -1 \\ x, & -1 \le x < 1 \\ (x-1)^2, & x \ge 1 \end{cases}$$

Fill in the table for the following functions to find the given limit.

9. $f(x) = \frac{\sin(3x)}{x}$

x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
f(x)							

$$\lim_{x \to 0} \frac{\sin(3x)}{x} =$$

$$10. \ g\left(x\right) = \frac{1 - \cos x}{x^2}$$

x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
g(x)							

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} =$$