CALCULUS WORKSHEET 2 ON LIMITS

- 1. Given that $\lim_{x \to a} f(x) = -3$, $\lim_{x \to a} g(x) = 0$, $\lim_{x \to a} h(x) = 8$, find the limits that exist. If the limit does not exist, explain why.
- (a) $\lim_{x \to a} \left[f(x) + h(x) \right] =$ (b) $\lim_{x \to a} \left[f(x) \right]^2 =$
- (c) $\lim_{x \to a} \sqrt[3]{h(x)} =$ (d) $\lim_{x \to a} \frac{1}{f(x)} =$

(e)
$$\lim_{x \to a} \frac{f(x)}{h(x)} =$$
 (f) $\lim_{x \to a} \frac{g(x)}{f(x)} =$

$$(g) \lim_{x \to a} \frac{f(x)}{g(x)} = \qquad (h) \lim_{x \to a} \frac{2f(x)}{h(x) - f(x)} =$$

2. The graphs of f and g are given. Use them to evaluate each limit, if it exists. If the limit does not exist, explain why.

$$(c) \lim_{x \to 0} \left[f(x)g(x) \right] = \qquad (1) \lim_{x \to -1} \frac{f(x)}{g(x)} =$$

(e)
$$\lim_{x \to 2} x^3 f(x) =$$
 (f) $\lim_{x \to 1} \sqrt{3 + f(x)} =$

Find the following limits. Show all steps.

 $3. \lim_{x \to 0} \frac{\sin 2x}{x} =$

TURN--->>>

9. Graph y = x, y = -x, and $y = x \cos\left(\frac{50\pi}{x}\right)$ on the same graph over the *x*-interval from -1 to 1, and use the Squeeze Theorem to find $\lim_{x \to 0} x \cos\left(\frac{50\pi}{x}\right)$.

10. Sketch the graphs of $y = 1 - x^2$, $y = \cos x$, and y = f(x), where *f* is any continuous function that satisfies the inequality $1 - x^2 \le f(x) \le \cos x$ for all *x* in the interval $\begin{pmatrix} \pi & \pi \\ x \end{pmatrix}$ are the inequality $1 - x^2 \le f(x) \le \cos x$ for all *x* in the interval $\begin{pmatrix} \pi & \pi \\ x \end{pmatrix}$.

 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. What can you say about the limit of f(x) as $x \to 0$? Explain your reasoning.

11. If $1 \le f(x) \le x^2 + 2x + 2$ for all x, find $\lim_{x \to -1} f(x)$.

12. If $3x \le f(x) \le x^3 + 2$, evaluate $\lim_{x \to 1} f(x)$.