AB: Practice Free Response. No Calculator. Show all work below line.

1. Let $f(x)= \begin{cases}x^{2}, & x \leq 1 \\ 2 x, & x>1\end{cases}$
a. Use the alternate form definition to find the left-hand derivative of f at $x=1$ if it exists.
b. Use the alternate form definition to find the right-hand derivative of f at $x=1$ if it exists.
c. Is $f(x)$ differentiable at $x=1$? Explain.
d. Determine if $f(x)$ is continuous at $x=1$. Give conclusion based on the 3 -step definition.
e. Sketch a graph of $f(x)$. Be sure to label it.
f. On the same set of axes, sketch a graph of $f^{\prime}(x)$. Use a different line quality, and be sure to label it.
2. For $f(x)=\frac{3}{x+1}$
a. Find $f^{\prime}(x)$ using the formal difference quotient definition of the derivative.
b. If $f^{\prime}(1)=-\frac{3}{4}$, Write the equation of the tangent line to $f(x)$ at $x=1$.
c. Write the equation of the normal line to $f(x)$ at $x=1$.
d. Evaluate $\lim _{x \rightarrow \infty} f^{\prime}(x)$. What does this result say about the end behavior of $f(x)$?
e. Sketch $f(x)$.
