
5.2—The Integral of the Natural Log 
 
TOOTLIFTST: 
 
 
Now that we know how to go forward with the natural log (that is, take the derivative of 
it) we can now go forward to the next step, going backward (that is, take the integral.) 
 
Here’s the theorem: 
The Log Rule of Integration 
 
Let u be a differentiable function of x. 

1.  ∫  += Cxdx
x

ln1

2.  ∫ += Cudu
u

ln1  

Now, because , we can modify #2 to become: dxudu ′=

3.  ∫ +=
′

Cudx
u
u ln  

 
So what’s up with the absolute value sign?  Why do we need it?  Remember, the domain 
of is all .  You cannot take the natural log of negative numbers (or zero).  BUT, 
the original function in the integral may take on negative values.  To be sure that none of 
these find their way into the antiderivative, we add the absolute value signs to be safe. 

xln 0>x

 
Here are some quick examples: 
 
 
Example 1: 
 

∫ ∫ +== Cxdx
x

dx
x

ln2122  

 
Here’s an important Korpi rule.  When it is possible to eliminate the absolute value sign 
from the problem, I want you to do it.  I consider it “more simplified” although it would 
still be technically correct to leave them in there. 
 
In the above problem, using the rules of logs, we can eliminate the absolute value sign by 
bringing the scalar multiple 2 up as an exponent, obtaining 
 

Cx +)ln( 2  
 



This is now a good place to discuss notation etiquette.  If the parenthesis were left off 
above, , we would still assume we were squaring only the x before we take the 
natural log.  If we intended to square the entire quantity, we would have to write it as 

 or the more preferable shorthanded form .   

Cx +2ln

C+( )x 2ln Cx +2ln
Let’s look at another example and crescendo in difficulty up to darn near impossible. 
 
 
Example 2. 
 

Evaluate ∫ −14x
dx  

First, we rewrite:  ( )∫ −− dxx 114  
Now you are probably used to looking for “inside” functions whose derivative is 
hopefully on the “outside.”  This is what the last section was about.  In this case, the 

is “inside” something to the negative first.  It’s derivative is 4, which is not another 
factor on the “outside,” so you have to make a correction of 

14 −x

4
1 .  If you proceed with the 

power rule, you obtain ( ) Cx
+







 −








0
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4
1 0

.  RUGHHHH  ROOOOOGH. 

This is precisely the situation in which we call on the services of the natural log:  when 
our “inside” function is either in the denominator to the first power, or in the numerator 
to the negative first power.  In such a singular case, the power rule will not work. 
 

Instead, the answer becomes Cx +−




14ln

4
1


  

In this problem, we are again able to eliminate the absolute value sign since the fourth 
root is an EVEN root.   
 
The final, simplified answer is then  Cx +−4 14ln  
 
If the original problem would have had an exponent on the 4 term other than 
negative one, the power rule would have worked. 

1−x

 
 
Example 3:  A definite Integral 
 

Evaluate ∫ +

2

0
2 1

dx
x

x  

Notice that is in the denominator and is “inside” something to the first power, 
, AND notice that its derivative, , is only off by a 2.  This is another job for 

natural log. 

12 +x
( 12 1+x ) x2
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Notice two things.  First, we don’t need absolute value brackets.  Why?  And Second, we 
could have evaluated it a bit differently in the third step. 
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=− .  Using the rules of condensing, we get the same answer.  

How do YOU see the problem? 
 
 
Example 4:  Quick Recognition:  Getting Good at it 
 
Quickly, as fast as you can without sacrificing accuracy, find the following integrals by 
pattern recognition. 
 

1.  ∫  
+
+ dx
xx

x
3

2 13

2.  ∫ dx
x
x

tan
sec2

 

3.  ∫  
+
+ dx

xx
x

2
1

2

4.  ∫ +
dx

x 23
1  

 
If you want to see if you’re correct, check your textbook on page 328. 
 
 
Example 5:  A new clever trick 
 

Evaluate ∫ +
++ dx

x
xx

1
1

2

2

 

None our ticks will work here.  The fact that we will use the log rule is not immediately 
obvious.  The derivative of either the top of bottom function is not the other factor.  The 
thing to do when you are in this situation, with a rational function where the degree of the 
numerator is ≥  the degree of the denominator is  . . . . . .  

LONG DIVISION 
 

1

1
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2
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This means that the original integral can be rewritten as One plus 
the remainder over the divisor. 

∫ +
+ dx

x
x

1
1 2  



This integral is now two smaller problems: 
( )∫∫

−
++ dxxxdx 12 11  

( )1ln
2
1 2 ++= xx  or 1ln 2 ++ xx  (absolute values not needed on either one) 

 
 
Example 6: u-substitution, hidden log rule 
 

Evaluate 
( )

dx
x

x
∫ + 21

2  

The derivative of the “inside” function is only 1.  We are off by a 2x.  All you know how 
to do at this point is u-substitution.  The problem definitely doesn’t appear to involve 
natural logs . . . yet. 
 
Let u .   and . 1+= x dxdu = 1−= ux
Substituting and pulling the 2 out front, we get  
 

∫ ∫ ∫ ++=−=−=
− −− C

u
uduuudu

uu
udu

u
u 1ln221212 21

222  

 
Plugging the original function back in for u (No, do it yourself), you get 
 

C
x

x +
+

++
1

11ln2  

 
Notice in the second step above, we were able to split the fraction up into smaller 
fractions.  When this is possible, it is often beneficial. 
 
 
The last two examples required rewriting a disguised integrand so that it fit one or more 
of our basic formula rules.  We will be increasing our arsenal of integration formulas, 
each fitting a different pattern.  It is very important that you get accustomed to seeing 
these patterns in order to master integration.  This is the hardest part about “going 
backwards”: there are no straightforward methods you can blindly apply ever time.  It is 
more of an evolved problem-solving skill that can only be developed through a keen eye, 
and a tenacious and persistent effort. 
 
So far, we have the following integration techniques: 
 

1. Look to see if the integrand is a known derivative of another function. 
Ex)  ∫ += Cxxdxx sectansec
 

2. Can the power rule be used immediately, or can the function be rewritten so that it 



can? 
Ex)  dxxx∫ −+ 123 2

Ex)  ∫∫ +=
+ dxxdx
x

xx 2323 2

 

 
3. If the integrand is a product or quotient of two functions, can we use the power 

rule and pattern recognition or u-substitution? 
Ex)   ∫ xdxx 24 sectan

 
4. If the pattern recognition doesn’t work, is it because we need to use the log rule? 

Ex)  ∫ +
dx

x
x

1
2
2  

Ex)  ∫ dx
xx ln

1  

 
5. Can the integrand be manipulated to fit a know formula?  Try using trig identities, 

multiplying by clever forms of one, adding clever forms of zero, long division, 
splitting a fraction up into two or more . . .  Be creative. 

 
 
Here are a couple more examples that are so similar they could be cousins, but yet so 
different they are probably very distant cousins. 
 
 
Example 7: 
 

Evaluate ∫ dx
xx ln

1 .  This one is helpful if it is rewritten as dx
xx














∫ ln

11 . 

Of the two possible choices for the “inside” function, the derivative of  is xln x
1 , which 

is the remaining factor on the outside.  The “inside” function resides in the denominator 

and is raised to the first power, 
( ) 









1ln

1
x

, which make it an ideal candidate for the log 

rule.  Our correct guess then becomes 
 
( ) Cx +lnln  

 
So we can use the log rule on ANY inside function, including itself.   
 
Here’s this one’s distant cousin 
 
 
Example 8: 



 

Evaluate ∫ dx
x

x2ln  

Rewriting, we get ( )∫ 





 dxx

x
2ln1  

Our “inside” function is again ln (hence the similarity) but it is now in the numerator to 
the second power, not in the denominator to the first.  This makes it a power rule, rather 
than a log rule. 

x

 
Our correct guess is then 
 
( ) xCx 3

3

ln
3
1

3
ln

=+  

Done. 
 
 
We will now conclude with the derivation of two of six integrals you will have to 
memorize.  They each require a clever rewriting of the integrand. 
 
Example 9: 
 
Evaluate  ∫ xdxtan
If you proceed down the list of strategies we have, none of them work.  What we can do 
is tap into our precalculus resources and pull out a Ration Identity. 
 

∫ ∫= dx
x
xxdx

cos
sintan

xsin xcos

 Now we have two options for the “inside” function.  The derivative 

of  IS , but it would have to be xcos
1

xsin−

 or sec , since the cosine is in the 

denominator.  The derivative of  is .  Since sine is in the numerator, we are 
only off by a negative sign, and because our “inside” function now is in the denominator 
to the first power, , our guess involves the natural log, naturally. 

x

xcos

( 1cos x)
 

∫ +−= Cxdx
x
x cosln

cos
sin  

 
Bringing the negative up as an exponent, we get an equivalent form 
 

( ) CxC
x

Cx +=+=+− secln
cos

1lncosln 1  

Now, if you ever forget this—remember, you are to memorize it—you can always derive 
it quickly.  The next one, however, will be more difficult to derive should you forget it.  It 
requires a more clever trick. 



Example 10:  Multiplying by a fraction equivalent to 1. 
 
Evaluate  ∫ xdxsec
 
This one seems harmless enough, but it is not a know derivative of another trig function, 
and rewriting this one as xcos

1  doesn’t help like it did above.  Instead, we use the fact 

that sec  and  are associated through there derivatives and decide to do the 
following 

x xtan

 

∫ ∫ ∫ +
+

=







+
+

= dx
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xxxdx
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xxxdxxdx

tansec
tansecsec

tansec
tansecsecsec

2

 

 
So how does that help?  It appears we have severely complicated the problem.  But as 
Churchill said, “Out of intense complexities, intense simplicities emerge,”  so is the case 
here.  Notice that the derivative of the denominator is precisely the numerator (remember, 
addition is commutative and associative so it is no problem to invert the terms to get what 
we need.)  With our “inside” function now being in the denominator to the first power, 
the power rule dictates the answer to be 
 

Cxx ++ tansecln  
 
Here is a summary of the six Integrals of trig functions you need to know by heart (2 of 
them you already know. 
 

∫ +−= Cuudu cossin  
 

∫ +−= Cuudu coslntan  
 

∫ ++= Cuuudu tanseclnsec  

∫ += Cuudu sincos  
 

∫ += Cuudu sinlncot  
 

Cuuudu ++−=∫ cotcsclncsc  

 
Remark:  As we did above for , each of these have equivalent forms that can be 
obtained by using trig identities and properties of logs. 

∫ udutan

 
And finally, the encore Example, using trig identities. 
 

∫ +
4

0

2tan1
π

dxx  Remembering the Pythagorean Identities and the Unit Circle is a must!!!! 

( )∫ ∫ ≈−+=+===
4

0

4

0

4
0

2 881.01ln12lntanseclnsecsec
π π

π
xxxdxdxx  

http://www.korpisworld.com/Mathematics/preap precal/Hand outs/trigonometric_identities.htm
http://www.korpisworld.com/Mathematics/preap precal/Hand outs/unit_circle.htm
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