\qquad
AP Cal Review 4.1-4.4
You should be able to perform problems or explain theories that cover the following subjects:
A. Interpretations and properties of definite integrals.

- Computation of Riemann sums using left, right, and midpoint evaluation points.
- Definite integral as a limit of Riemann sums over equal subdivisions.
- Definite integral interpreted as the change of the quantity over an interval:

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

- Basic properties of definite integrals.
B. Fundamental Theorem of Calculus
- Use of the Fundamental Theorem to evaluate definite integrals
- Use of Fundamental Theorem to represent a particular antiderivative, and the analytical and graphical analysis of functions so defined.
C. Techniques of antidifferentiation
- Antiderivatives following directly from derivatives of basic functions.
- Antiderivatives by substitution of variables (including change of limits for definite integrals)
D. Applications of antidifferentiation
- Finding specific antiderivatives using initial conditions, including applications to motion along a line.
- Solving separable differential equations and using them in modeling. In particular, studying the equation $y^{\prime}=k y$ and exponential growth.

Practice Problems

1. If $\frac{d y}{d x}=x y^{2}$ and $y(1)=1$, then $y=$
2. $\int \frac{x^{3}+1}{x^{2}} d x$
3.

$\left.\begin{array}{|cc|}\hline t & \begin{array}{c}v(t) \\ \text { (seconds) }\end{array} \\ \hline \text { feet per } \\ \text { second) }\end{array}\right]$

The graph of the velocity $v(t)$, in $\mathrm{ft} / \mathrm{sec}$, of a car traveling on a straight road, for $0 \leq t \leq 50$, is shown above. A table of values for $v(t)$, at 5 second intervals of time t, is shown to the right of the graph.
a) During what intervals of time is the acceleration of the car positive? Give a reason for you answer?
b) Find the average acceleration of the car, in $\mathrm{ft} / \mathrm{sec}^{2}$, over the interval $0 \leq t \leq 50$.
c) Find one approximation for the acceleration of the car, in $f t / \mathrm{sec}^{2}$, at $t=40$. Show the computations you used to arrive at your answer.
d) Approximate $\int_{0}^{50} v(t) d t$ with Riemann sum, using the midpoints of five subintervals of equal length. Using correct units, explain the meaning of the integral.
4. If $\int_{a}^{b} f(x) d x=10$, where $f(x)$ is a continuous function, what would we need to do with the limits of integration to maintain an equivalent area under the transformation $f(x-3)$? How would the area be affected under the transformation $f(x)+5$?
5. Find the values of k for which $\int_{-3}^{k}\left(x^{2}-5\right) d x=0$.
6. $\int_{1}^{4}|4 x-12| d x=$
7. Use the limit definition of the Definite Integral (Riemann Sums) to evaluate the area of the region bounded by $f(x)=x^{2}+2$, the x -axis, and the vertical lines $x=1$ and $x=2$.
8. Verify your answer from number 7 using the Fundamental Theorem of Calculus.
9. If $f(x)=g(x)+7$ for $3 \leq x \leq 5$, then find $\int_{3}^{5}[f(x)+g(x)] d x$. Leave your answers in terms of

$$
\int_{3}^{5} g(x) d x
$$

10. Let f be defined by the graph below, where f is continuous and differentiable on $(0, \infty)$;
$f(0)=0 ; 0<a<b<c<d$. Let $F(x)=\int_{a}^{x} f(t) d t$.

a) $F(a)=$
b) $f(b)=$
c) Is $F(b)$ positive, negative, or zero?
d) Is $F(c)$ positive, negative, or zero?
e) Is $F(x)$ increasing or decreasing at $x=c$?
f) Is $F^{\prime}(a)$ positive, negative, or zero?
g) Is $F(x)$ concave up or concave down at $x=c$?
h) Is $F(x)$ concave up or concave down at $s=d$?
i) At what value of x is $F(x)$ a maximum? A minimum?
j) Is $F(0)$ positive, negative, or zero?
11. $\int_{-4}^{10} g(x) d x=5$ and $\int_{3}^{10} g(x) d x=-6$, then
a) $\int_{-4}^{10} 2 g(x) d x=$
b) $\int_{-4}^{3} g(x) d x=$
c) $\int_{10}^{10} g(x) d x=$
d) $\int_{-4}^{10}(4+g(x)) d x=$
e) $\int_{10}^{-4} g(x) d x=$
12. Assume both f and g are continuous, $a<b$, and $\int_{a}^{b} f(x) d x>\int_{a}^{b} g(x) d x$.
a) Must $\left|\int_{a}^{b} f(x) d x\right|>\left|\int_{a}^{b} g(x) d x\right|$? Why?
b) Must $f(x)>g(x)$ for all x in the interval $[a, b]$?
c) Does it follow that $\int_{a}^{b}|f(x)| d x>\int_{a}^{b}|g(x)| d x$?
13. Assume f is continuous, $a<b$ and $\int_{a}^{b} f(x) d x=0$.
a) Does it necessarily follow that $f(x)=0$ for all x in $[a, b]$?
b) Does it necessarily follow that $f(x)=0$ for at least some x in $[a, b]$?
c) Does it necessarily follow that $\int_{a}^{b}|f(x)| d x=0$?
d) Does it necessarily follow that $\left|\int_{a}^{b} f(x) d x\right|=0$?
