AB: Practice Free Response. No Calculator. Show all work below line.

1. Let $f(x)= \begin{cases}x^{2}, & x \leq 1 \\ 2 x, & x>1\end{cases}$
a. Use the alternate form definition to find the left-hand derivative of f at $x=1$ if it exists.
b. Use the alternate form definition to find the right-hand derivative of f at $x=1$ if it exists.
c. Is $f(x)$ differentiable at $x=1$? Explain.
d. Determine if $f(x)$ is continuous at $x=1$. Give conclusion based on the 3 -step definition.
e. Sketch a graph of $f(x)$. Be sure to label it.
f. On the same set of axes, sketch a graph of $f^{\prime}(x)$. Use a different line quality, and be sure to label it.
2. A particle moves along a horizontal line with position equation $s(t)=(3 t-2)(t-5)$ with $s(t)$ measured in feet t measured in seconds and $t \geq 0$.
a. What is the initial position of the particle?
b. When is the first time the particle is at zero?
c. What is the particle's displacement on the interval from $t=0$ to $t=2$ seconds? Include units. Explain what that number means in terms of the particle's starting position.
d. What is the particle's average velocity on the interval from $t=0$ to $t=2$ seconds? Include units.
e. What is the particle's speed at $t=2$ seconds? In which direction is it heading? Include units.
f. What is the particle's acceleration at $t=2$ seconds? Include units.
g. At what time does the particle turn around?
h. What is the particle's velocity when it is at zero for the second time?
i. What is the particle's name?
