Lagrange Form of the Remainder (also called Lagrange Error Bound or Taylor's Theorem Remainder)

When a Taylor polynomial is used to approximate a function, we need a way to see how accurately the polynomial approximates the function.
$f(x)=P_{n}(x)+R_{n}(x)$ so $R_{n}(x)=f(x)-P_{n}(x)$

Written in words:
Function = Polynomial Approximation + Remainder, so Remainder $=$ Function - Polynomial Approximation

Taylor's Theorem: If a function f is differentiable through order $n+1$ in an interval containing c, then for each x in the interval, there exists a number z between x and c such that

$$
f(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}+R_{n}(x)
$$

where the remainder $R_{n}(x)$ (or error) is given by $R_{n}(x)=\frac{f^{(n+1)}(z)}{(n+1)!}(x-c)^{n+1}$, the Lagrange Remainder

Historically, the remainder was not due to Taylor but to a French mathematician, Joseph Louis Lagrange (17361813). For this reason, $R_{n}(x)$ is called the Lagrange form of the remainder.

When applying Taylor's Formula, we would not expect to be able to find the exact value of z. Rather, we would attempt to find bounds for the derivative $f^{(n+1)}(z)$ (the y-value) from which we will be able to tell how large the remainder $R_{n}(x)$ is.

Ex1. Let f be a function with 5 derivatives on the interval $[2,3]$. Assume that $\left|f^{(5)}(x)\right|<0.2$ for all x in the interval $[2,3]$ and that a fourth-degree Taylor polynomial for f at $c=2$ is used to estimate $f(3)$
(a) How accurate is this approximation? Give three decimal places.
(b) Suppose that $P_{4}(3)=1.763$. Use your answer to (a) to find an interval in which $f(3)$ must lie.
(c) Could $f(3)$ equal 1.778 ? Why or why not?
(d) Could $f(3)$ equal 1.764 ? Why or why not?

Ex2. (a) Find the fifth-degree Maclaurin polynomial for $\sin x$. Then use your polynomial to approximated $\sin 1$, and use Taylor's Theorem to find the maximum error for your approximation. Give three decimal places.
(b) Use your answer to (a) to find an interval $[a, b]$ such that $a \leq \sin 1 \leq b$.
(c) Could $\sin 1$ equal 0.9 ? Why or why not?

Do not use your calculator on Ex. 3
Ex 3. (a) Write the fourth-degree Maclaurin polynomial for $f(x)=e^{x}$. Then use your polynomial to approximate e, and find a Lagrange error bound for the maximum error when $|x| \leq 1$.
(b) Use your answer to (a) to find an interval $[a, b]$ such that $a \leq e \leq b$.

Ex4. The function f has derivatives of all orders for all real numbers x. Assume that $f(2)=6, f^{\prime}(2)=4$, $f^{\prime \prime}(2)=-7, f^{\prime \prime \prime}(2)=8$.
(a) Write the third-degree Taylor polynomial for f about $x=2$, and use it to approximate $f(2.3)$. Give three decimal places.
(b) The fourth derivative of f satisfies the inequality $\left|f^{(4)}(x)\right| \leq 9$ for all x in the closed interval $[2,2.3]$. Use the Lagrange error bound on the approximation of $f(2.3)$ found in part (a) to find an interval $[a, b]$ such that $a \leq f(2.3) \leq b$. Give three decimal places.
(c) Based on the information above, could $f(2.3)$ equal 6.992? Explain why or why not.

