Geometric Series, nth Term Test for Divergence, and Telescoping Series

Geometric Series Test

A geometric series is in the form $\sum_{n=0}^{\infty} a_{1} r^{n}$ or $\sum_{n=1}^{\infty} a_{1} r^{n-1}, a \neq 0$
The geometric series diverges if $|r| \geq 1$.

If $|r|<1$, the series converges to the sum $S=\frac{a_{1}}{1-r}$.
NOTE: this formula works only when the first term is a_{1}, otherwise you can adapt it by subtracting out "missing" terms!!

Ex. Determine whether the following series converge or diverge.
(a) $\sum_{n=1}^{\infty} \frac{3}{2^{n}}$
(b) $\sum_{n=1}^{\infty}\left(\frac{3}{2}\right)^{n}$

```
nth Term Test for Divergence
If \(\lim _{n \rightarrow \infty} a_{n} \neq 0\), then the series \(\sum_{n=1}^{\infty} a_{n}\) diverges.
(think about it, it should make perfect sense!)
```

Note: This does NOT say that if $\lim _{n \rightarrow \infty} a_{n}=0$, then the series DOES converge. This test can only be used to prove that a series diverges (hence the name.) If $\lim _{n \rightarrow \infty} a_{n}=0$, then this test doesn't tell us anything, is inconclusive, doesn't work, fails, etc. . . . We MUST use another test. This test is a GREAT time-saver. Always perform it FIRST, not second, but FIRST!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Ex. Determine whether the following series converge or diverge.
(a) $\sum_{n=1}^{\infty} \frac{2 n+3}{3 n-5}$
(b) $\sum_{n=1}^{\infty} \frac{n!}{2 n!+1}$
(c) $\sum_{n=1}^{\infty} \frac{3^{n}-2}{3^{n}}$

A series such as $\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\cdots$ is called a telescoping series because it collapses to one term or a few terms. If a series collapses to a finite sum, then it converges by the Telescoping Series Test.

Ex. Determine whether the following series converges or diverges.
(a) $\sum_{n=1}^{\infty}\left(\frac{1}{2 n+1}-\frac{1}{2 n+3}\right)$
(b) $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$

Integral Test
If f is Decreasing, Continuous, and Positive (Dogs Cuss in Prison!) for $x \geq 1$ AND $a_{n}=f(x)$, then $\sum_{n=1}^{\infty} a_{n}$ and $\int_{1}^{\infty} f(x) d x$ either BOTH converge or diverge.

Note: This does NOT mean that the series converges the value of the definite integra!!!!!!!

If the series converges to S, then the remainder, $R_{N}=\left|S-S_{N}\right|$ is bounded by $0 \leq R_{N} \leq \int_{N}^{\infty} f(x) d x$.

Ex. Determine whether the following series converge or diverge.
(a) $\sum_{n=1}^{\infty} \frac{n}{n^{2}+1}$
(b) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$

Ex. Approximate the sum of the convergent series $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$ by using six terms. Include an estimate of the maximum error for your approximation.

p-series

A series of the form $\sum_{n=1}^{\infty} \frac{1}{n^{p}}=\frac{1}{1^{p}}+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\cdots+\frac{1}{n^{p}}+\cdots$ is called a p-series, where p is a positive constant.

For $p=1$, the series $\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}+\cdots$ is called the harmonic series.

What values of p would cause $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ to converge? to diverge?
Let $p=1$:

Let $p=1.1$:

Let $p=0.9$:

p-Series Test

The p-series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}=\frac{1}{1^{p}}+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\cdots+\frac{1}{n^{p}}+\cdots$
a)
b)
c)

Ex. $\sum_{n=1}^{\infty} \frac{1}{n \sqrt{n}}$

