Taylor Polynomials and Approximations

Polynomial functions can be used to approximate other elementary functions such as $\sin x, e^{x}$, and $\ln x$. On your calculator graph:

$$
\begin{aligned}
& y^{1}=\sin x \\
& y^{2}: x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}
\end{aligned}
$$

And compare.

Definition of an nth-degree Taylor polynomial:

If f has n derivatives at $x=c$, then the polynomial

$$
P_{n}(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}
$$

is called the n th-degree Taylor polynomial for f at c, named after Brook Taylor, an English mathematician.

Note: A first-degree Taylor polynomial is a tangent line to f at c.

If $c=0$, then $P_{n}(x)=f(0)+f^{\prime}(0)(x)+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots+\frac{f^{(n)}(0)}{n!} x^{n}$ is called the n th-degree Maclaurin polynomial for f, named after Scottish mathematician, Colin Maclaurin.

Note: Maclaurin not only got his name on a very specific case of Taylor's work, but he also had big hair.

Ex. Find the Maclaurin polynomial of degree $n=6$ for $f(x)=\cos x$. Then use $P_{6}(x)$ to approximate the value of $\cos (0.1)$.

Ex. Find the Taylor polynomial of degree $n=6$ for $f(x)=\ln x$ at $c=1$. Then use $P_{6}(x)$ to approximate the value of $\ln (1.1)$

Ex. Suppose that g is a function which has continuous derivatives, and that $g(2)=3, g^{\prime}(2)=-4, g^{\prime \prime}(2)=7$, $g^{\prime \prime \prime}(2)=-5$. Write the Taylor polynomial of degree 3 for g centered at 2 .

Ex. Use the Taylor approximation of $e^{x} \approx 1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}$ for x near 0 to find $\lim _{x \rightarrow 0} \frac{e^{x}-1}{2 x}$.

Ex. Given that $P_{2}(x)=a+b x+c^{2}$ is the second-degree Taylor polynomial for f about $x=0$, what can you say about the signs of a, b, and c if f has the graph pictured at the right? Justify your answer.

