Taylor Series centered at $x=c$:
$f(x)=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\cdots+\frac{f^{(n)}(c)}{n!}(x-c)^{n}+\cdots=\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!}(x-c)^{n}$

If $c=0$, the series is called a Maclaurin series.
Ex. Find a Taylor series for $f(x)=e^{5 x}$ centered at $c=2$. Give the first four nonzero terms and the general term.

There are three special Maclaurin series you must know. These are the series for $e^{x}, \sin x$, and $\cos x$.
To derive a series for e^{x} :

To derive a series for $\sin x$:

To derive a series for $\cos x$:

You can manipulate these three special series (or any series we are given) to find other series by using the following techniques:

1) Substitute into a series
2) Multiply or divide the series by a constant and/or a variable
3) Add or subtract two series
4) Differentiate or integrate a series
5) Recognize the series as the sum of a geometric power series

Ex. Find a Maclaurin series for $f(x)=\sin \left(x^{2}\right)$. Find the first four nonzero terms and the general term.

Ex. Find a Maclaurin series for $g(x)=x \cos x$. Find the first four nonzero terms and the general term.

Ex. Find a Maclaurin series for $h(x)=\frac{e^{x}+e^{-x}}{2}$. Find the first four nonzero terms and the general term.

