Representation of Functions by Power Series
There are several techniques for finding a power series to represent a given function:

1) Recognizing it as the sum of a geometric power series
2) Adding or subtracting two power series
3) Multiplying or dividing a power series by a variable and/or constant
4) Differentiating or integrating a power series
5) Substituting into a known series

First we'll do a quick review of geometric series. Geometric series are formed by multiplying by a common ratio r. Suppose I told you to start with $a_{1}=2$ and to let $r=3$, what geometric series would you write?

What if $a_{1}=2$ and $r=-3$?

What if $a_{1}=1$ and $r=x$?

Ex. Find a power series for $f(x)=\frac{1}{1-x^{2}}$, centered at $x=0$. Find the first four nonzero terms and the general term.

Ex. Find a power series for $g(x)=\frac{1}{4+x}$, centered at $x=0$. Find the first four nonzero terms and the general term.

Ex. Find a power series for $h(x)=\frac{15}{2 x-1}$, centered at $x=2$. Find the first four nonzero terms and the general term.

