Summary of Tests for Infinite Series Convergence
 Korpi: BC Calculus

Given a series

$$
\sum_{n=1}^{\infty} a_{n} \text { or } \sum_{n=0}^{\infty} a_{n}
$$

The following is a summary of the tests that we have learned to tell if the series converges or diverges. They are listed in the order that you should apply them, unless you spot it immediately, i.e. use the first one in the list that applies to the series you are trying to test, and if that doesn't work, try again. Off you go, young Jedis. Use the Force. Remember, it is always with you, and it is mass times acceleration!

nth-term test: (Test for Divergence only)

If $\lim _{n \rightarrow \infty} a_{n} \neq 0$, then the series is divergent. If $\lim _{n \rightarrow \infty} a_{n}=0$, then the series may converge or diverge, so you need to use a different test.

Geometric Series Test:

If the series has the form $\sum_{n=1}^{\infty} a r^{n-1}$ or $\sum_{n=0}^{\infty} a r^{n}$, then the series converges if $|r|<1$ and diverges otherwise. If the series converges, then it converges to $\frac{a}{1-r}$.

Integral Test:

In Prison, Dogs Curse: If $a_{n}=f(n)$ is Positive, Decreasing, Continuous function, then $\sum_{n=1}^{\infty} a_{n}$ and $\int_{1}^{\infty} f(n) d n$ either both converge or both diverge.

- This test is best used when you can easily integrate a_{n}.
- Careful: If the Integral converges to a number, this is NOT the sum of the series. The series will be smaller than this number. We only know this it also converges, to what is anyone's guess.

p-series test:

If the series has the form $\sum \frac{1}{n^{p}}$, then the series converges if $p>1$ and diverges otherwise. When $p=1$, the series is the divergent Harmonic series.

Alternating Series Test:

If the series has the form $\sum(-1)^{n} b_{n}$, then the series converges if $0<b_{n+1} \leq b_{n}$ (decreasing terms) for all n, for some n, and $\lim _{n \rightarrow \infty} b_{n}=0$. If either of these conditions fails, the test fails, and you need use a different test.

- if the series converges, the sum, S, lies between $S_{n}-a_{n+1}$ and $S_{n}+a_{n+1}$
- if $\left|\sum a_{n}\right|$ converges then $\sum a_{n}$ is Absolutely Convergent
- if $\left|\sum a_{n}\right|$ diverges but $\sum a_{n}$ converges, then $\sum a_{n}$ is Conditionally Convergent
- if $\left|\sum a_{n}\right|$ converges, then $\sum a_{n}$ converges.

Direct Comparison Test:

If the series looks like another series $\sum b_{n}$, then:

- If $a_{n} \leq b_{n}$ and $\sum b_{n}$ converges, then $\sum a_{n}$ converges also.
- If $a_{n} \geq b_{n}$ and $\sum b_{n}$ diverges then $\sum a_{n}$ diverges also.

You need to know if $\sum b_{n}$ converges or diverges, so you usually use a geometric series, p -series, or integrable series for the comparison. You must verify that for sufficiently large values of n, the rule of sequence of one is greater than or equal to the other term for term. Use this test when the rule of sequence if VERY SIMILAR to a known series.
Ex) compare $\frac{n}{2^{n}}$ to $\frac{1}{2^{n}}, \frac{1}{n^{3}+1}$ to $\frac{1}{n^{3}}, \frac{n^{2}}{\left(n^{2}+3\right)^{2}}$ to $\frac{n}{\left(n^{2}+3\right)^{2}}$

Limit Comparison Test:

(may be used instead of Direct Comparison Test)
If $a_{n}, b_{n}>0$ and $\lim _{x \rightarrow \infty}\left|\frac{a_{n}}{b_{n}}\right|$ or $\lim _{x \rightarrow \infty}\left|\frac{b_{n}}{a_{n}}\right|$ equal any finite number, then either both $\sum a_{n}$ and $\sum b_{n}$ converge or diverge.
Use this test when you cannot compare term by term because the rule of sequence is "too UGLY" but you can still find a known series to compare with it.
Ex) compare: $\frac{3 n^{2}+2 n-1}{4 n^{5}-6 x+7}$ to $\frac{1}{n^{3}}$ (you can disregard the leading coefficient and all non-leading terms,
looking only at the condensed degree of the leading terms: $\frac{n^{2}}{n^{5}}=\frac{1}{n^{3}}$.

Ratio Test:

If $a_{n}>0$ and $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=N$ (where N is a real number), then

1. $\sum a_{n}$ converges absolutely (and hence converges) if $N<1$
2. $\sum a_{n}$ diverges if $N>1$ or $N=\infty$
3. The test is inconclusive if $N=1$ (use another test)

Use this test for series whose terms converge rapidly, for instance those involving exponentials and/or factorials!!!!!!!

Root Test:

If $\sum a_{n}$ is a series with non-zero terms and $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=N$ (where N is a real number), then

1. $\sum a_{n}$ converges absolutely (and hence converges) if $N<1$
2. $\sum a_{n}$ diverges if $N>1$ or $N=\infty$
3. The test is inconclusive if $N=1$ (use another test)

Use this test for series involving nth powers. Ex) $\sum \frac{e^{2 n}}{n^{n}}$

Remember, if you are asked to find the ACTUAL sum of an infinite series, it must either be a Geometric series $\left(S=\frac{a}{1-r}\right)$ or a Telescoping Series (requires expanding and canceling terms). The telescoping series can be quite overt, such as $\sum\left(\frac{1}{2 n-1}-\frac{1}{2 n+1}\right)$ or in "disguise" as $\sum \frac{2}{4 n^{2}-1}$, in which case partial fractions must be used. Also note, it is possible to tell that this last series converges by Comparison tests, but the actual sum can only be given by expanding!

The only other test that allows us to approximate the infinite sum is the Alternate Series Test. We can find the nth partial Sum S_{n} for any series.

So, how can you remember all these tests (besides using your Jedi powers)? Try this Moses phrase:

PARTING C

P p-series: Is the series in the form $\frac{1}{n^{p}}$?

A Alternating series: Does the series alternate? If it does, are the terms getting smaller, and is the nth term 0?

R Ratio Test: Does the series contain things that grow very large as n increases (exponentials or factorials)?

T Telescoping series: Will all but a couple of the terms in the series cancel out?

I Integral Test: Can you easily integrate the expression that defines the series (are Dogs Cussing in Prison?)
$\mathrm{N} \quad n$th Term divergence Test: Is the nth term something other than zero?
G Geometric series: Is the series of the form $\sum_{n=0}^{\infty} a r^{n}$?

C Comparison Tests: Is the series almost another kind of series (e.g. p-series or geometric)? Which would be better to use: the Direct or Limit Comparison Test?

