Work the following on notebook paper. Use your calculator only on problems 9,10 and 12. Show all work.
On problems 1-5, find a Maclaurin polynomial of degree n for each of the following.

1. $f(x)=e^{-x}, n=3$
2. $f(x)=e^{2 x}, n=4$
3. $f(x)=\sin x, n=7$
4. $f(x)=x e^{2 x}, n=4$
5. $f(x)=\frac{1}{x+1}, n=5$

On problems 6-8, find a Taylor polynomial of degree n centered at $x=c$ for each of the following.
6. $f(x)=\frac{1}{x}, n=5, c=1$
7. $f(x)=\ln x, n=5, c=1$
8. $f(x)=\cos x, n=6, c=\frac{\pi}{4}$
9. Use your answer from problem 1 to approximate $f\left(\frac{1}{2}\right)$ to four decimal places.
10. Use your answer from problem 7 to approximate $f(1.2)$ to four decimal places.
11. Suppose that function $f(x)$ is approximated near $x=0$ by a sixth-degree Taylor polynomial $P_{6}(x)=3 x-4 x^{3}+5 x^{6}$. Give the value of:
(a) $f(0)$
(b) $f^{\prime}(0)$
(c) $f^{\prime \prime \prime}(0)$
(d) $f^{(5)}(0)$
(e) $f^{(6)}(0)$
12. Suppose that g is a function which has continuous derivatives, and that

$$
g(5)=3, g^{\prime}(5)=-2, g^{\prime \prime}(5)=1, g^{\prime \prime \prime}(5)=-3
$$

(a) What is the Taylor polynomial of degree 2 for g near 5 ? What is the Taylor polynomial of degree 3 near 5?
(b) Use the two polynomials that you found in part (a) to approximate g (4.9).

For problems 13-16, suppose that $P_{2}(x)=a+b x+c x^{2}$ is the second degree Taylor polynomial for the function f about $x=0$. What can you say about the signs of a, b, and c, if f has the graphs given below?
13.

14.

15.

16.

17. Show how you can use the Taylor approximation $\sin x \approx x-\frac{x^{3}}{3!}$ for x near 0 to find $\lim _{x \rightarrow 0} \frac{\sin x}{x}$.
18. Use the fourth-degree Taylor approximation of $\cos x \approx 1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}$ for x near 0 to find $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}$.
19. Estimate the integral $\int_{0}^{1} \frac{\sin t}{t} d t$ using a Taylor polynomial for $\sin t$ about $t=0$ of degree 5 .

