Work the following on notebook paper. Use your calculator only on problems 9, 10 and 12. Show all work.

On problems 1-5, find a Maclaurin polynomial of degree *n* for each of the following.

- 1. $f(x) = e^{-x}$, n = 32. $f(x) = e^{2x}$, n = 4
- 3. $f(x) = \sin x$, n = 7
- 4. $f(x) = xe^{2x}$, n = 4
- 5. $f(x) = \frac{1}{x+1}$, n = 5

On problems 6-8, find a Taylor polynomial of degree *n* centered at x = c for each of the following.

6. $f(x) = \frac{1}{x}$, n = 5, c = 17. $f(x) = \ln x$, n = 5, c = 18. $f(x) = \cos x$, n = 6, $c = \frac{\pi}{4}$

9. Use your answer from problem 1 to approximate $f\left(\frac{1}{2}\right)$ to four decimal places.

- 10. Use your answer from problem 7 to approximate f(1.2) to four decimal places.
- 11. Suppose that function f(x) is approximated near x = 0 by a sixth-degree Taylor polynomial $P_6(x) = 3x 4x^3 + 5x^6$. Give the value of:
 - (a) f(0) (b) f'(0) (c) f''(0) (d) $f^{(5)}(0)$ (e) $f^{(6)}(0)$
- 12. Suppose that g is a function which has continuous derivatives, and that g(5) = 3, g'(5) = -2, g''(5) = 1, g'''(5) = -3
 - (a) What is the Taylor polynomial of degree 2 for g near 5? What is the Taylor polynomial of degree 3 near 5?
 - (b) Use the two polynomials that you found in part (a) to approximate g(4.9).

For problems 13-16, suppose that $P_2(x) = a + bx + cx^2$ is the second degree Taylor polynomial for the function f about x = 0. What can you say about the signs of a, b, and c, if f has the graphs given below? 13. 14. 15. 16.

17. Show how you can use the Taylor approximation $\sin x \approx x - \frac{x^3}{3!}$ for x near 0 to find $\lim_{x \to 0} \frac{\sin x}{x}$. 18. Use the fourth-degree Taylor approximation of $\cos x \approx 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$ for x near 0 to find $\lim_{x \to 0} \frac{1 - \cos x}{x}$.

19. Estimate the integral $\int_{0}^{1} \frac{\sin t}{t} dt$ using a Taylor polynomial for $\sin t$ about t = 0 of degree 5.