Work the following on notebook paper. No Calculator except on 7(c).
On problems 1-5, find a power series for the given function, centered at the given value of a. Give the first four nonzero terms and the general term.

1. $f(x)=\frac{1}{1+x}, a=0$
2. $f(x)=\frac{1}{1+x^{2}}, a=0$
3. $f(x)=\frac{3}{x+2}, a=0$
4. $f(x)=\frac{x}{1-2 x}, a=0$
5. $f(x)=\frac{1}{4-x}, a=1$
6. Let f be the function given by $f(t)=\frac{4}{1+t^{2}}$ and G be the function given by $G(x)=\int_{0}^{x} f(t) d t$.
(a) Find the first four nonzero terms and the general term for the power series expansion of $f(t)$ about $t=0$.
(b) Find the first four nonzero terms and the general term of the power series expansion of $G(x)$ about $x=0$.
(c) Find the interval of convergence of the power series in part (b). Justify your answer.
7. Let f be the function given by $f(x)=e^{-2 x^{2}}$
(a) Find the first four nonzero terms and the general term of the power series for $f(x)$ about $x=0$.
(b) Find the interval of convergence of the power series for $f(x)$ about $x=0$. Show the analysis that leads to your conclusion.
(c) Let g be the function given by the sum of the first four nonzero terms of the power series for $f(x)$ about $x=0$. Show that $|f(x)-g(x)|<0.02$ for $-0.6 \leq x \leq 0.6$.
8. The Maclaurin series for $f(x)$ is given by $1+\frac{x}{2!}+\frac{x^{2}}{3!}+\frac{x^{3}}{4!}+\cdots+\frac{x^{n}}{(n+1)!}+\cdots$
(a) Find $f^{\prime}(0)$ and $f^{(17)}(0)$.
(b) For what values of x does the given series converge? Show your reasoning.
(c) Let $g(x)=x f(x)$. Write the Maclaurin series for $g(x)$ in terms of a familiar function without using series. Then, write $f(x)$ in terms of the same familiar function.

By recognizing each series in problems 9-12 as a Taylor series evaluated at a particular value of x, find the sum of each of the following convergent series.
9. $1+\frac{2}{1!}+\frac{4}{2!}+\frac{8}{3!}+\cdots+\frac{2^{n}}{n!}+\cdots$
10. $1-\frac{1}{3!}+\frac{1}{5!}-\frac{1}{7!}+\cdots+\frac{(-1)^{n}}{(2 n+1)!}+\cdots$
11. $1+\frac{1}{4}+\left(\frac{1}{4}\right)^{2}+\left(\frac{1}{4}\right)^{3}+\cdots+\left(\frac{1}{4}\right)^{n}+\cdots$
12. $1-\frac{100}{2!}+\frac{10,000}{4!}+\cdots+\frac{(-1)^{n} \cdot 10^{2 n}}{(2 n)!}+\cdots$

