Work the following on notebook paper. Use may use your calculator on problems 11 and 12.
On problems 1 and 2, find the radius of convergence and the interval of convergence.

1. $\sum_{n=1}^{\infty} \frac{(x-5)^{n}}{n 3^{n}}$
2. $\sum_{n=0}^{\infty} n!(x-2)^{n}$

Use Taylor series to evaluate.
3. $\lim _{x \rightarrow 0} \frac{1-\cos (2 x)}{x^{3}}$
4. $\lim _{x \rightarrow 0} \frac{e^{3 x}-1}{x}$

Find the sum.
5. $1+\frac{3}{1!}+\frac{9}{2!}+\frac{27}{3!}+\ldots+\frac{3^{n}}{n!}+\ldots$
6. $1-\frac{1}{3!}+\frac{1}{5!}-\frac{1}{7!}+\ldots+\frac{(-1)^{n}}{(2 n+1)!}+\ldots$
7. $\frac{1}{5}-\frac{1}{25}+\frac{1}{125}-\frac{1}{625}+\ldots+\frac{(-1)^{n+1}}{5^{n}}+\ldots$
8. A function f is defined by $f(x)=\frac{1}{4}+\frac{2}{4^{2}} x+\frac{3}{4^{3}} x^{2}+\ldots+\frac{n+1}{4^{n+1}} x^{n}+\ldots$
for all x in the interval of convergence of the power series.
(a) Find the interval of convergence for this power series. Show the work that leads to your answer.
(b) Find $\lim _{x \rightarrow 0} \frac{f(x)-\frac{1}{4}}{x}$.
(c) Write the first three nonzero terms and the general term for an infinite series that represents $\int_{0}^{1} f(x) d x$.
(d) Find the sum of the series determined in part (c).
9. Let f be the function given by $f(x)=\ln (3-x)$. Find the third-degree Taylor polynomial for f about $x=2$.
10. If f is a function such that $f^{\prime}(x)=\cos \left(x^{3}\right)$, find the coefficient of the x^{7} term in the Taylor polynomial for $f(x)$ about $x=0$.
11. The graph of the function represented by the Maclaurin series
$1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\ldots+\frac{(-1)^{n} x^{n}}{n!}+\ldots$ intersects the graph of $y=x^{3}$ at $x=$?
12. The function f has derivatives of all orders for all real numbers x. Assume $f(5)=2$, $f^{\prime}(5)=-3, f^{\prime \prime}(5)=-1$, and $f^{\prime \prime \prime}(5)=6$.
(a) Write the third-degree Taylor polynomial for f about $x=5$, and use it to approximate $f(4.2)$.
(b) The fourth derivative of f satisfies the inequality $\left|f^{(4)}(x)\right| \leq 2$ for all x in the closed interval $[4,2,5]$. Use the Lagrange error bound on the approximation of $f(4.2)$ to explain why $f(4.2) \neq 3.4$.
(c) Write the fourth-degree Taylor polynomial, $P(x)$, for $g(x)=f\left(x^{2}+5\right)$ about $x=0$. Use P to explain whether g has a relative maximum, relative minimum, or neither a relative maximum nor a relative minimum at $x=0$.
13. The Maclaurin series for the function f is given by $f(x)=\sum_{n=1}^{\infty} \frac{(3 x)^{n}}{n}$.
(a) Write the first four nonzero terms of the Maclaurin series for $f(x)$.
(b) Write the first four nonzero terms and the general term for the Maclaurin series for $f^{\prime}(x)$.
(c) Use your answer to (b) to find the value of $f^{\prime}\left(-\frac{1}{4}\right)$.
(d) Given that $g^{\prime}(x)=f(x)$ and that $g(0)=1$, write the first four terms and the general term for $g(x)$.

