Work the following on notebook paper. Use may use your calculator on problems 11 and 12.
On problems 1-3, find a Taylor series for $f(x)$ centered at the given value of a. Give the first four nonzero terms and the general term for each series.

1. $f(x)=e^{2 x}, a=3$
2. $f(x)=\frac{1}{x}, a=1$
3. $f(x)=\ln x, a=1$

On problems 4-5, find a Taylor series for $f(x)$ centered at the given value of a. Give the first four nonzero terms.
4. $f(x)=\sin x, a=\frac{\pi}{6}$
5. $f(x)=\cos x, a=-\frac{\pi}{4}$

On problems 6-10, find a Maclaurin series for $f(x)$. Give the first four nonzero terms and the general term for each series.
6. $f(x)=e^{-\frac{x}{2}}$
7. $f(x)=\sin \left(x^{2}\right)$
8. $f(x)=\frac{\cos (3 x)}{x}$
9. $f(x)=x^{2} e^{-x}$
10. $f(x)=\sin ^{2} x$ (HINT: use the power-reducing identity)
11. Use your answer for problem 7 to approximate $\int_{0}^{1} \sin \left(x^{2}\right) d x$ correct to three decimal places.
12. Use series to approximate $\int_{0}^{1} \cos \left(x^{2}\right) d x$ correct to three decimal places.
13. (a) Find the first four nonzero terms in the Taylor series expansion about $x=0$ for $f(x)=\sqrt{1+x}$.
(b) Use the results found in part (a) to find the first four nonzero terms in the Taylor series expansion about $x=0$ for $g(x)=\sqrt{1+x^{3}}$.
(c) Find the first four nonzero terms in the Taylor series expansion about $x=0$ for the function h such that $h^{\prime}(x)=\sqrt{1+x^{3}}$ and $h(0)=4$.
14. Let f be the function defined by $f(x)=\frac{1}{x-1}$.
(a) Write the first four terms and the general term of the Taylor series expansion of $f(x)$ about $x=2$.
(b) Use the result from part (a) to find the first four terms and the general term of the series expansion about $x=2$ for $\ln |x-1|$
(c) Use the series in part (b) to compute a number that differs from $\ln \left(\frac{3}{2}\right)$ by less than 0.05 . Justify your answer.

