Work the following on notebook paper. Use may use your calculator on problems 11 and 12.

On problems 1-3, find a Taylor series for f(x) centered at the given value of *a*. Give the first four nonzero terms and the general term for each series.

1.
$$f(x) = e^{2x}$$
, $a = 3$
2. $f(x) = \frac{1}{x}$, $a = 1$
3. $f(x) = \ln x$, $a = 1$

On problems 4-5, find a Taylor series for f(x) centered at the given value of a. Give the first four nonzero terms.

4. $f(x) = \sin x$, $a = \frac{\pi}{6}$ 5. $f(x) = \cos x$, $a = -\frac{\pi}{4}$

On problems 6-10, find a Maclaurin series for f(x). Give the first four nonzero terms and the general term for each series.

- 6. $f(x) = e^{-\frac{x}{2}}$ 7. $f(x) = \sin(x^2)$ 8. $f(x) = \frac{\cos(3x)}{x}$ 9. $f(x) = x^2 e^{-x}$
- 10. $f(x) = \sin^2 x$ (HINT: use the power-reducing identity)
- 11. Use your answer for problem 7 to approximate $\int_{a}^{1} \sin(x^2) dx$ correct to three decimal places.
- 12. Use series to approximate $\int_{0}^{1} \cos(x^2) dx$ correct to three decimal places.
- 13. (a) Find the first four nonzero terms in the Taylor series expansion about x = 0 for $f(x) = \sqrt{1+x}$.
 - (b) Use the results found in part (a) to find the first four nonzero terms in the Taylor series expansion about x = 0 for $g(x) = \sqrt{1 + x^3}$.
 - (c) Find the first four nonzero terms in the Taylor series expansion about x = 0 for the function h such that $h'(x) = \sqrt{1 + x^3}$ and h(0) = 4.
- 14. Let f be the function defined by $f(x) = \frac{1}{x-1}$.
 - (a) Write the first four terms and the general term of the Taylor series expansion of f(x) about x = 2.
 - (b) Use the result from part (a) to find the first four terms and the general term of the series expansion about x = 2 for $\ln|x-1|$
 - (c) Use the series in part (b) to compute a number that differs from $ln\left(\frac{3}{2}\right)$ by less than 0.05. Justify

your answer.