

1. Which of the following represents the area of the shaded region in the figure above?
(A) $\int_{c}^{d} f(y) d y$
(B) $\int_{a}^{b}(d-f(x)) d x$
(C) $f^{\prime}(b)-f^{\prime}(a)$
(D) $(b-a)[f(b)-f(a)]$
(E) $(d-c)[f(b)-f(a)]$
2. If $x^{3}+3 x y+2 y^{3}=17$, then in terms of x and $y, \frac{d y}{d x}=$
(A) $-\frac{x^{2}+y}{x+2 y^{2}}$
(B) $-\frac{x^{2}+y}{x+y^{2}}$
(C) $-\frac{x^{2}+y}{x+2 y}$
(D) $-\frac{x^{2}+y}{2 y^{2}}$
(E) $-\frac{x^{2}}{1+2 y^{2}}$
3. $\int \frac{3 x^{2}}{\sqrt{x^{3}+1}} d x=$
(A) $2 \sqrt{x^{3}+1}+C$
(B) $\frac{3}{2} \sqrt{x^{3}+1}+C$
(C) $\sqrt{x^{3}+1}+C$
(D) $\ln \sqrt{x^{3}+1}+C$
(E) $\ln \left(x^{3}+1\right)+C$
4. For what value of x does the function $f(x)=(x-2)(x-3)^{2}$ have a relative maximum?
(A) -3
(B) $-\frac{7}{3}$
(C) $-\frac{5}{2}$
(D) $\frac{7}{3}$
(E) $\frac{5}{2}$
5. If $f(x)=\sin \left(\frac{x}{2}\right)$, then there exists a number c in the interval $\frac{\pi}{2}<x<\frac{3 \pi}{2}$ that satisfies the conclusion of the Mean Value Theorem. Which of the following could be c ?
(A) $\frac{2 \pi}{3}$
(B) $\frac{3 \pi}{4}$
(C) $\frac{5 \pi}{6}$
(D) π
(E) $\frac{3 \pi}{2}$
6. If $f(x)=(x-1)^{2} \sin x$, then $f^{\prime}(0)=$
(A) -2
(B) -1
(C) 0
(D) 1
(E) 2
7. The acceleration of a particle moving along the x-axis at time t is given by $a(t)=6 t-2$. If the velocity is 25 when $t=3$ and the position is 10 when $t=1$, then the position $x(t)=$
(A) $9 t^{2}+1$
(B) $3 t^{2}-2 t+4$
(C) $t^{3}-t^{2}+4 t+6$
(D) $t^{3}-t^{2}+9 t-20$
(E) $36 t^{3}-4 t^{2}-77 t+55$
8. $\frac{d}{d x} \int_{0}^{x} \cos (2 \pi u) d u$ is
(A) 0
(B) $\frac{1}{2 \pi} \sin x$
(C) $\frac{1}{2 \pi} \cos (2 \pi x)$
(D) $\cos (2 \pi x)$
(E) $2 \pi \cos (2 \pi x)$

9. The graph of the function f is shown above for $0 \leq x \leq 3$. Of the following, which has the least value?
(A) $\int_{1}^{3} f(x) d x$
(B) Left Riemann sum approximation of $\int_{1}^{3} f(x) d x$ with 4 subintervals of equal length.
(C) Right Riemann sum approximation of $\int_{1}^{3} f(x) d x$ with 4 subintervals of equal length.
(D) Midpoint Riemann sum approximation of $\int_{1}^{3} f(x) d x$ with 4 subintervals of equal length.
(E) Trapezoidal sum approximation of $\int_{1}^{3} f(x) d x$ with 4 subintervals of equal length.
10. What is the minimum value of $f(x)=x \ln x$?
(A) $-e$
(B) -1
(C) $-\frac{1}{e}$
(D) 0
(E) $f(x)$ has no minimum value.

11. (1999, AB-5) The graph of the function f, consisting of three line segments, is shown above. Let $g(x)=\int_{1}^{x} f(t) d t$.
(a) Compute $g(4)$ and $g(-2)$.
(b) Find the instantaneous rate of change of g, with respect to x, at $x=1$.
(c) Find the absolute minimum value of g on the closed interval $[-2,4]$. Justify your answer.
(d) The second derivative of g is not defined at $x=1$ and $x=2$. How many of these values are x coordinates of points of inflection of the graph of g ? Justify your answer.
12. (1998, AB-4) Let f be a function with $f(1)=4$ such that for all points (x, y) on the graph of f the slope is given by $\frac{3 x^{2}+1}{2 y}$.
(a) Find the slope of the graph of f at the point where $x=1$.
(b) Write an equation for the line tangent to the graph of f at $x=1$, and use it to approximated $f(1.2)$.
(c) Find $f(x)$ by solving the separable differential equation $\frac{d y}{d x}=\frac{3 x^{2}+1}{2 y}$ with the initial condition $f(1)=4$.
(d) Use your solution from part (c) to find $f(1.2)$.
