- Integration by u-substitution
$y=m x+b$
- When your "inside" function is linear, and it's derivative is "off" by more than a constant.
- Let $u=$ "inside" function and change all variables from $x, d x$ to $u, d u$.

- Logarithmic Differentiation (LOG DIFF)
- When you are taking the derivative of a variable function raised to a power of a variable function.
- Take the natural \log of both sides, differentiate implicitly, then resolve for y.
- Example: $\frac{d}{d x}\left[x^{\sin x}\right]=(\text { var })^{\text {var }}$

$$
\begin{aligned}
y & =x^{\sin x} \\
\ln y & =\sin x \cdot \ln x \\
\frac{d}{d x}: \frac{1}{y} \cdot \frac{d y}{d x} & =\frac{\cos x \cdot \ln x\left(+\sin x\left(\frac{1}{x}\right)\right.}{\frac{d y}{d x}}=\left[\frac{d}{\left.\cos x \cdot \ln x+\left(+\sin x\left(\frac{1}{x}\right)\right] \cdot x^{\sin x}\right]}\right.
\end{aligned}
$$

- Derivatives of Trig/inverse Trig functions
- $\frac{d}{d x} \arcsin x=\frac{1}{\sqrt{1-x^{2}}}$
$\frac{d}{d x} \arctan x=\frac{1}{1+x^{2}}$
$\frac{d}{d x} \operatorname{arcsec} x=\frac{1}{\mid x / \sqrt{x^{2}-1}}$
- $\frac{d}{d x} \arccos x=\frac{-1}{\sqrt{1-x^{2}}}$
$\frac{d}{d x} \operatorname{arccot} x=\frac{-1}{1+x^{2}}$
$\frac{d}{d x} \operatorname{arccsc} x=\frac{-1}{/ X / \sqrt{x^{2}-1}}$
- $\frac{d}{d x} \sin x=\cos x$
$\frac{d}{d x} \tan x=\sec ^{2} x$
$\frac{d}{d x} \sec x=\sec x \tan x$
- $\frac{d}{d x} \cos x=-\sin x$
$\frac{d}{d x} \cot x=-\csc ^{2} x$
$\frac{d}{d x} \csc x=-\csc x \cot x$

$$
\sin ^{2} x=(\sin x)^{2}
$$

- Example: $\frac{d}{d x} \cos ^{-1}\left(\tan \left(2 x^{2}\right)\right)=$

$$
\frac{-1}{\sqrt{1-\left(\tan \left(2 x^{2}\right)\right)^{2}}} \cdot \sec ^{2}\left(2 x^{2}\right) \cdot 4 x
$$

- Integral of Trig functions
- $\quad \int \sin x d x=$ $-\cos x+c$
$\int \begin{aligned} & \cos x d x= \\ & \sin x+C\end{aligned}$
$* \sqrt{\left(\frac{\sin x}{(\cos x)} x\right.}$
$\int \tan x d x=$
$-\ln |\cos x|+c$
$\ln |\operatorname{sex}|+c$

$$
\begin{aligned}
& \int \tan x d x= \\
& -\ln |\cos x|+c \\
& \ln |\sec x|+c
\end{aligned}
$$

$$
\int \cot x d x=
$$

$$
\begin{aligned}
& \int \cot x d x= \\
& \ln |\sin x|+C \frac{1}{\sin x}(\sin x)
\end{aligned}
$$

$$
-\ln |\csc x|+c
$$

$$
\begin{array}{llll}
0 \int \sec x d x= & \int \csc x d x= & \int \sec ^{2} x d x= & \int \sec x \tan x d x= \\
\ln |\sec x+\tan x|+C & -\ln |\csc x+\cot x|+C & \tan x+C & \sec x+C
\end{array}
$$

Examples: $\int \frac{\tan ^{2} x d x=}{\int\left(\sec ^{2} x-1\right) d x}$ $\int\left(\sec ^{2} x-1\right) d x=$
$(\tan x-x+c)$ PIT: $\begin{gathered}\cos ^{2} x^{2}+\sin ^{2} x=1 \\ 1+\tan ^{2} x=\sec ^{2} x \\ 1+\cot ^{2} x=\csc ^{2} x\end{gathered}$

- Finding extrema vs. finding the location of extrema
- An extreme value is a y-value. It occurs at an x-value $\downarrow \downarrow E V T$
- Example: Find the maximum value of $f(x)=x^{2}-5$ on $[-1,2]$

$$
\begin{aligned}
f^{\prime}(x)=2 x & =0 \\
x & =0] \in[-1,2] \\
\rightarrow f(-1) & =-4 \\
\rightarrow f(2) & =-1 \quad \text { So } f \text { has a max of }-1 \\
\operatorname{cr} \rightarrow f(0) & =-5
\end{aligned}
$$

- Finding slopes of inverse functions
- Inverse functions, at corresponding points, have reciprocal slopes.
- If $f(g(x))=x=g(f(x))$, then $f(x)$ and $g(x)$ are inverses
- $g(a)=b$ implies $f(b)=a$
- $g^{\prime}(a)=\frac{1}{f^{\prime}(b)}$

$$
\begin{aligned}
& g:(a, b) \\
& f:(b, a)
\end{aligned} \quad g^{\prime}(a)=\frac{1}{f^{\prime}(b)}
$$

$$
f(-1)=(-2)^{\downarrow}
$$

- Example: If $f(x)=g^{-1}(x)$ and $f(x)=2 x^{2}+3 x-1$ and if $g(-2)=-1$, find $g^{\prime}(-2)$.

$$
\begin{gathered}
f^{\prime}(x)=4 x+3 \\
f^{\prime}(-1)=-4+3 k \\
f^{\prime}(-1)=-1
\end{gathered}
$$

$$
\text { So } \begin{aligned}
g^{\prime}(-2) & =\frac{1}{f^{\prime}(-1)} \\
& =\frac{1}{-1}
\end{aligned}
$$

$$
=-1
$$

- Finding the slope of normal line to a function, $f(x)$, at a point $x=a$
- Normal lines are perpendicular to tangent lines at a point.
- The normal slope, n, is the opposite, reciprocal of the tangent slope.
- $n=\frac{-1}{f^{\prime}(a)}$
- Example: Find the equation of the normal line to the graph of $y=e^{2 x}$ at $x=\ln 2$
- Squiggle Alert when the words "approximate" or "estimate" are used in the question
- Explicitly stated approximations must have an approximation symbol, \approx, rather than an equal sign.
- This happens with tangent line approximations, numeric methods of integration, linearization, Euler's Method (BC), and Taylor Polynomials (BC).
- Example: If f is differentiable, and if $f(3)=2$ and $f(5.5)=5$, approximate $f^{\prime}(4.1)$. Show the work that leads to your answer.

$$
\begin{gathered}
\text { ex) } f(x)=3 x+(x+7) \\
D_{f}: \mathbb{R} \quad D_{f}: x \neq-7
\end{gathered}
$$

$3 / 5$

- Average value vs. average rate of change
- Average value is the averagey-yalue for whatever is being measured on the y-axis.
- Average value is "integral over width"
- Average value $=\frac{\int_{a} f(x) d x}{b-a}=\frac{(1)}{b-a} \int_{a}^{b} f(x) d x$
- Average rate of change is the change in y over the change in x-the slope of the secant line
- Average rate of change $=\frac{f(b)-f(a)}{b-a} \quad D Q$

Example: If $W(t)$ is the rate at which rain falls on a roof of a house for $0 \leq t \leq 3$, where W is measured in $\mathrm{cm} / \mathrm{hr}$ and t is measured in hours. Explain the meaning, with correct units, of $\frac{1}{3} \int_{0}^{3} d t$ in the context of rainfall.

$$
\int_{4}^{7} \sin x d x=3.461
$$

- The misuse of equality a.k.a. mathematically prevarication "
- If you use an equal sign, the expressions you are equating better be equal, or you will lose a point.
- Example: If $f(x)=2 x^{2}-1$, find $f^{\prime}(1)$
- WRONG: $f^{\prime}(x)=4 x=4$
- CORRECT: $\underbrace{f^{\prime}(x)=4 x}, \underbrace{f^{\prime}(1)=4(1)=4}$
- WRONG: $\int_{0}^{2} e^{x} d x=6.389 \stackrel{\downarrow}{=} 6$
- Example: To the nearest whole number, find $\int_{0}^{2} e^{x} d x$

- CORRECT: $\int_{0}^{2} e^{x} d x=6.389 \stackrel{\tilde{\downarrow}}{\approx} 6$ OR $\int_{0}^{2} e^{x} d x=6$
- Be sure to include units in all final numeric answers AND any written explanation of this answer (including both independent AND dependent variables.
- Units can cost you an entire point if you omit them or use the wrong ones.

- Example: $w(t)$ is the temperature of water in a jug in a refrigerator, in ${ }^{\circ} \mathrm{F}$, where t is in minutes.

In the context of the problem, explain the meaning of (a) $w^{\prime}(5)=-2.1$
(b) $\frac{1}{5} \int_{0}^{5} w(t) d t=44$

$$
\begin{aligned}
& \text { At } t=5 \mathrm{~m}: n \text {, the } \\
& \text { waters temp is } \\
& \text { decerang by } \\
& 2.1{ }^{\circ} \mathrm{F} \text { vermin. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { from } t=0 \text { min to } t=\text { min, } \\
& \text { the Aug ter p of } \\
& \text { water is } 44^{\circ} \mathrm{F}
\end{aligned}
$$

- Speed increasing or decreasing vs. Velocity increasing or decreasing
- If at $t=c, v(c)>0$ AND $a(c)>0$ or $v(c)<0$ AND $a(c)<0$, then speed is increasing at $t=c$.
- If at $t=c, v(c)<0$ AND $a(c)>0$ or $v(c)>0$ AND $a(c)<0$, then speed is decreasing at $t=c$.
- If at $t=c, \underline{v^{\prime}(c)}=a(c)>0$, then velocity is increasing at $t=c$.
- If at $t=c, \underline{v^{\prime}(c)}=a(c)<0$, then velocity is decreasing at $t=c$.
- If the graph of $v(t)$ moves TOWARD the t axis, speed is decreasing.
- If the graph of $v(t)$ moves AWAY FROM the t axis, speed is increasing.
- Example: If a particle moves along the x-axis such that for $t \geq 0$, its position is give by , $x(t)=\frac{1}{3} t^{3}-4 t^{2}+15 t-7$, at $t=4.5$, is the speed of the particle increasing or decreasing? At this time is the velocity of the particle increasing or decreasing? Justify your answers.

$$
\begin{aligned}
& x^{\prime}(t)=v(t)=t^{2}-8 t+15, \quad \begin{array}{l}
V(4.5)=-0.75<0 \\
V^{\prime}(t)=a(t)=2 t-8, \\
a(4.5)=1 \geqslant 0 \\
\text { So at } t=4.5 \text {, the speed } \\
\text { is decreasing. } \\
\text { But, since } V^{\prime}(4.5)=9(4.5)=1>0, \\
\text { at } t=4.5, \text { velocity is Increasing. }
\end{array}
\end{aligned}
$$

What Are signs? or
How a
Sign Changes

- IVT (The Intermediate Value Theorem)
- If $f(x)$ is continuous on a closed interval $[a, b]$, then $f(x)$ takes on all y-values between $f(a)$ and $f(b)$.
- Example: If $f(x)$ is a differentiable function such that $f(-1)=-3$ and $f(4)=\frac{5}{6}$, explain why $f(x)$ must have rooton the interval $(-1,4)$. $f(x)$ is differentiable, so $f(k)$ is continuous on $[-1,4]$

- EVT (The Extreme Value Theorem)
- If $f(x)$ is continuous on a closed interval $[a, b]$, then $f(x)$ has both a Maximum and Minimum on the CLOSED interval $[a, b]$.
- Example: If a particle moves along the x-axis such that its position is give by, $x(t)=t^{2}-3 t+2$, on the interval $0 \leq t \leq 2$, at what lime, t, is the particle farthest left? Farthest right? $\quad X(t)$ is continuous $\forall x \in \mathbb{R}$ minimum position \max position $x^{\prime}(t)=2 t-3=0$

- MVT (The Mean Value Theorem)
- If $f(x)$ is continuous on a closed interval $[a, b]$, and differentiable on the open interval (a, b), then there is an $x=c$ on the OPEN interval (a, b) where the slope of the tangent line (instantaneous rate of change/derivative) equals the slope of the secant line (average rate of change).
- USED TO SHOW THAT A DERIVATIVE EXISTS ON AN INTERVAL
- Set it up as $f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}$, then solve for x, then make sure x is in the OPEN interval!
- Example: If $f(x)=x^{3}+x-4$, on the interval $-1 \leq x \leq 2$, find the value of c guaranteed by the Mean Value Theorem. $\quad f^{\prime}(x)=\frac{f(2)-f(-1)}{2-(-1)}$

$$
\begin{aligned}
& p \quad \begin{array}{c}
3 x^{2}+1=4 \\
3 x^{2}=3
\end{array}\left\{\begin{array}{l}
x^{2}=1 \\
x=-1, x=1
\end{array} \quad x=-1 \notin(-1,2)\right. \text { openinterval }
\end{aligned}
$$

Example: If $f^{\prime}(x)$ is a differentiable function for all x, and if $f^{\prime}(5)=-2$ and $f^{\prime}(7)=4$, explain why there must be a $c, 5<c<7$ such that $f^{\prime \prime}(c)=3$. Since f^{\prime} is differentiable, it is continuous.

$$
\begin{aligned}
& \text { must be a } c, 5<c<7 \text { such that }\left(f^{\prime \prime}(c)=3 .\right. \\
& \text { if } f(3)=4 \& f^{\prime} \leq 3, \quad \text { by theme: } f^{\prime \prime}(c)=\frac{f^{\prime}(7)-f^{\prime}(5)}{7-5}=\frac{4+2}{2}=3 \\
& \text { for some } 5<c<7 .
\end{aligned}
$$

$$
\frac{f(5)-f(3)}{s-3}=f^{\prime}(x) \leq 3
$$

- Geometric formulas to remember
- Volume of a Sphere: $V=\frac{4}{3} \pi r^{3}$
- Volume of a Cone: $V=\frac{\pi}{3} r^{2} h$
- Surface area of a Cylinder: $A=2 \overparen{2 r}^{2}+2 \pi r h$
- Trapezoid: $A=\frac{1}{2} \Delta x\left(y_{1}+y_{2}\right)$

Surface area of a Sphere: $A=4 \pi r^{2}$
Volume of a Cylinder: $V=\pi r^{2} h$
Equilateral Triangle: $A=\sqrt{\frac{\sqrt{3}}{4}} s^{2}$
Rectangle: $A=h \cdot w$

- Justifying relative extrema using the First Derivative test and Second Derivative Test First Derivative Test (at a critical point, $(c, f(c))$)
$x=C \quad$ "Since $f^{\prime}(c)=0$ (or $f^{\prime}(c)=D N E$), and since $f^{\prime}(x)$ changes from positive to negative at

Squeeze

 $x=c, f(x)$ has a Relative (local) Maximum at $x=c$."$\ell_{x \rightarrow c} f(x)=$? "Since $f^{\prime}(c)=0$ (or $f^{\prime}(c)=D N E$), and since $f^{\prime}(x)$ changes from negative to positive at $x=c, f(x)$ has a Relative (local) Minimum at $x=c . "$
if $g(x) \leq f(x) \leq h(x)$
$\forall x \neq c$
the if $\lim _{x \rightarrow c} g(x)=L=l_{x \rightarrow c} h(x)$
then $\sum_{x \rightarrow c} f(x)=<$ also! !

- "Since $f^{\prime}(c)=0$ (or $f^{\prime}(c)=D N E$), and since $f^{\prime \prime}(\epsilon)>0, f(x)$ has a Relative (local) Minimum at $x=c$."
- Justifying an inflection point at a p.i.v. (possible inflection value)
- If $f(c)$ is defined, and either $f^{\prime \prime}(c)=0$ or $f^{\prime \prime}(c)=D N E$, then $f(x)$ has an inflection point at $(c, f(c))$ if $f^{\prime \prime}$ changes from positive to negative at $x=c$ or negative to positive at $x=c$.
- Example: A continuous function $f(x)$ has a second derivative $f^{\prime \prime}(x)=\frac{|x-3|}{x-3}$. Determine if $f(x)$ has an inflection value or not at $x=3$. Justify.

$\lim _{x \rightarrow 3^{+}} \frac{2 x-6}{|4 x-12|}$

$$
|b|=M \cdot \int_{a}^{b}(S(x))^{2} d x
$$

- Cross-sectional volume magic numbers
- Squares: \qquad Equilateral Triangles:
\qquad
$\frac{\sqrt{3}}{4}$

Semicircles:
Rectangles with height n times the base
n

- Quarter Circles: Iss Rt Triangle, Leg in Base:

Isos Rt Triangle, Hypot in Base:
$\frac{1}{4}$

- Inverse Trig Integral formulas
$\circ \int \frac{d u}{a^{2}+u^{2}}=$
$\frac{1}{a} \arctan \frac{v}{a}+C$
$\int \frac{d u=}{\sqrt{a^{2}-u^{2}}}=$
$\arcsin \frac{u}{a}+c$
No $\frac{1}{a}$ in front

$$
(5)\left(\frac{1}{3}\right) \arcsin \frac{3 x}{\sqrt{7}}+c
$$

ride Tars

$$
\begin{aligned}
& \int \frac{d u}{u \sqrt{u^{2}-a^{2}}}= \\
& \frac{1}{a} \operatorname{arsec} \frac{|u|}{a}+c \\
& \text { create what you need (le })
\end{aligned}
$$

- Examples:

$$
\begin{aligned}
& \int \frac{1}{\left(x^{2}+5\right)} d x= \\
& n^{2}=a=\sqrt{5} \\
& \frac{1}{\sqrt{5}} \arctan \frac{x}{\sqrt{5}}+c
\end{aligned}
$$

Convergence Tests (used also to determine endpoints of intervals of convergence)

- nth term test for divergence

$$
\sum_{n} \text { if } \ell_{n \rightarrow \infty} a_{n} \neq 0 \text {, series diverges }
$$

p-series
$\sum \frac{1}{n^{p}}$ converges if $p>1$
Diverges if $p \leq 1$
$* \int_{1}^{\infty} \frac{1}{x^{p}} d x$, conure it $p>1$
to $\frac{1}{p-1}$
Ratio Test $\sum a_{n}$ connuges if

$$
\begin{aligned}
& l_{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|<1 \\
& \text { diverges if }>1
\end{aligned}
$$

* to find
Interval/Rad of contingence
- Pen or Pencil on the exam???

Direct/Limit Comparison Test
compare to a know series
Alternating Series Test/Error
$\sum(-1)^{n} a_{n}$
Converges if ${ }_{n \rightarrow \infty} a_{n}=0$

- 3-decimal accuracy (round or truncate). Store non-exact answers needed for future calculations and LABEL THEM ON YOUR PAPER. Avoid duplicate letters. NEVER use an approximate answer to calculate a subsequent value.
- Implicit Differentiation -your derivative will have both x and y in it.
- You will have as many $\frac{d y}{d x}$, s in your derivative as you have y 's in your equation.
- Look to solve for y first, especially if your answer choices are in terms of x only and/or you are finding an actual value and are only given $x=a$.
- When solving for $\frac{d y}{d x}$, if you ever end up with an answer like $\frac{d y}{d x}=\frac{a-b}{c-d}$, realize that this is equivalent to $\frac{d y}{d x}=\frac{b-a}{d-c}$.
- When finding a second derivative (or higher order derivative) implicitly, if the instructions say "in terms of x and y," be sure to plug in your $\frac{d y}{d x}$ expression into your final answer.
- Parenthesis are your best friends -it's better to have them and not need them than to need them and not have them. This is especially true for:
- $k \int_{a}^{b} f(x) d x=k[(f(b))-(f(a))]$ $\int_{a}^{b}[f(x)+g(x)] d x$
- $\pi \int_{a}^{b}\left[(R(x))^{2}-(r(x))^{2}\right] d x$
$\lim _{h \rightarrow 0} \frac{\left((x+h)^{2}-2(x+h)+1\right)-\left(x^{2}-2 x+1\right)}{h}=$
- $5-\cos ^{2} x=5-\left(1-\sin ^{2} x\right)$

$$
\frac{5}{2-\sqrt{x-3}} \cdot \frac{2+\sqrt{x-3}}{2+\sqrt{x-3}}=\frac{5(2+\sqrt{x-3})}{4-(x-3)}
$$

- Cusp Alert!
- If you have a variable raised to a power that is between zero and one, you will have a continuous function that is not differentiable. The root of the term with the alerted power will be a critical value of the function!
- Example: Find the critical values of $f(x)=(x)^{2 / 3}-x \quad f(x)=(x-3)^{4}$

$$
\text { * In any number line chart } \quad \|_{\text {C.V.s. p.iv.s \& any discos (VA) }}^{\substack{c V_{1}}}
$$

- No Abbreviations! (max/min/VT)EVT/MUT ok)
- Pronouns. Don't Use Pronouns. Don't be vague, ambiguous, or unclear either.
- Don't say things like, ". . since it changes from positive to negative . . .," "since the graph is increasing," or "the function changes signs there."
- Be explicit. Say what you mean and mean what you say.
- Don't waste time erasing. If you draw a line through something, it becomes "invisible" to the AP graders. Why So Serious?, We Are Sparta.
- Don't draw a line through anything on a free response or erase anything unless you have the time and intention of replacing it with something else. Something is better than nothing. Never leave anything blank, whether it's a M.C. or F.R. question. You EARN points on this test, not lose points.
- Don't let a wrong answer on one part of a F.R. question keep you from getting credit on subsequent parts. Using your wrong answer correctly, making up a reasonable equation to work with, or even attaching units to a number can get you points. NEVER give up. NEVER surrender.
- You don't need to simplify your numeric answers on the free response (unless the instructions explicitly tell you to approximate it to 3 decimals or ask you to "show" that a number equals a given number), but you MUST indicate your numeric methods to get credit. This especially goes for integral approximations from a table of values, difference quotients, and using areas from a graph to approximate integrals.
- Breathe, Relax, Smile, and get that 5!

