- Integration by u-substitution
- When your "inside" function is linear, and it's derivative is "off" by more than a constant.
- Let $u=$ "inside" function and change all variables from $x, d x$ to $u, d u$.
- Example: $\int_{0}^{1} \frac{2 x}{\sqrt{x+2}} d x$
- Logarithmic Differentiation (LOG DIFF)
- When you are taking the derivative of a variable function raised to a power of a variable function.
- Take the natural \log of both sides, differentiate implicitly, then resolve for y.
- Example: $\frac{d}{d x}\left[x^{\sin x}\right]=$
- Derivatives of Trig/inverse Trig functions
- $\frac{d}{d x} \arcsin x=$
$\frac{d}{d x} \arctan x=$
$\frac{d}{d x} \operatorname{arcsec} x=$
- $\frac{d}{d x} \arccos x=$
$\frac{d}{d x} \operatorname{arccot} x=$
$\frac{d}{d x} \operatorname{arccsc} x=$
- $\frac{d}{d x} \sin x=$
$\frac{d}{d x} \tan x=$
$\frac{d}{d x} \sec x=$
- $\frac{d}{d x} \cos x=$
$\frac{d}{d x} \cot x=$
$\frac{d}{d x} \csc x=$
- Example: $\frac{d}{d x} \cos ^{-1}\left(\tan \left(2 x^{2}\right)\right)=$
- Integral of Trig functions
- $\int \sin x d x=$
$\int \cos x d x=$
$\int \tan x d x=$
$\int \cot x d x=$
- $\int \sec x d x=$
$\int \csc x d x=$
$\int \sec ^{2} x d x=\quad \int \sec x \tan x d x=$
- Examples: $\int \tan ^{2} x d x=$

$$
\int \frac{\cot (\sqrt{x})}{\sqrt{x}} d x=
$$

- Finding extrema vs. finding the location of extrema
- An extreme value is a y-value. It occurs at an x-value
- Example: Find the maximum value of $f(x)=x^{2}-5$ on $[-1,2]$
- Finding slopes of inverse functions
- Inverse functions, at corresponding points, have reciprocal slopes.
- If $f(g(x))=x=g(f(x))$, then $f(x)$ and $g(x)$ are inverses
- $g(a)=b$ implies $f(b)=a$
- $g^{\prime}(a)=\frac{1}{f^{\prime}(b)}$
- Example: If $f(x)=g^{-1}(x)$ and $f(x)=2 x^{2}+3 x-1$ and if $g(-2)=-1$, find $g^{\prime}(-2)$.
- Finding the slope of a normal line to a function, $f(x)$, at a point $x=a$
- Normal lines are perpendicular to tangent lines at a point.
- The normal slope, n, is the opposite, reciprocal of the tangent slope.
- $n=\frac{-1}{f^{\prime}(a)}$
- Example: Find the equation of the normal line to the graph of $y=e^{2 x}$ at $x=\ln 2$
- Squiggle Alert when the words "approximate" or "estimate" are used in the question
- Explicitly stated approximations must have an approximation symbol, \approx, rather than an equal sign.
- This happens with tangent line approximations, numeric methods of integration, linearization, Euler's Method (BC), and Taylor Polynomials (BC).
- Example: If f is differentiable, and if $f(3)=2$ and $f(5.5)=5$, approximate $f^{\prime}(4.1)$. Show the work that leads to your answer.
- Average value vs. average rate of change
- Average value is the average \boldsymbol{y}-value for whatever is being measured on the y-axis.
- Average value is "integral over width"
- Average value $=\frac{\int_{a}^{b} f(x) d x}{b-a}=\frac{1}{b-a} \int_{a}^{b} f(x) d x$
- Average rate of change is the change in y over the change in x-the slope of the secant line
- Average rate of change $=\frac{f(b)-f(a)}{b-a}$
- Example: If $W(t)$ is the rate at which rain falls on a roof of a house for $0 \leq t \leq 3$, where W is measured in $\mathrm{cm} / \mathrm{hr}$ and t is measured in hours. Explain the meaning, with correct units, of $\frac{1}{3} \int_{0}^{3} W(t) d t$ in the context of rainfall.
- The misuse of equality a.k.a. mathematically prevarication
- If you use an equal sign, the expressions you are equating better be equal, or you will lose a point.
- Example: If $f(x)=2 x^{2}-1$, find $f^{\prime}(1)$
- WRONG: $f^{\prime}(x)=4 x=4$
- CORRECT: $f^{\prime}(x)=4 x, f^{\prime}(1)=4(1)=4$
- Example: To the nearest whole number, find $\int_{0}^{2} e^{x} d x$
- WRONG: $\int_{0}^{2} e^{x} d x=6.389=6$
- CORRECT: $\int_{0}^{2} e^{x} d x=6.389 \approx 6$ OR $\int_{0}^{2} e^{x} d x=6$
- Be sure to include units in all final numeric answers AND any written explanation of this answer (including both independent AND dependent variables.
- Units can cost you an entire point if you omit them or use the wrong ones.
- Example: $w(t)$ is the temperature of water in a jug in a refrigerator, in ${ }^{\circ} F$, where t is in minutes. In the context of the problem, explain the meaning of (a) $w(5)=-2.1 \quad$ (b) $\frac{1}{5} \int_{0}^{5} w(t) d t=44$
- Speed increasing or decreasing vs. Velocity increasing or decreasing
- If at $t=c, v(c)>0$ AND $a(c)>0$ or $v(c)<0$ AND $a(c)<0$, then speed is increasing at $t=c$.
- If at $t=c, v(c)<0$ AND $a(c)>0$ or $v(c)>0$ AND $a(c)<0$, then speed is decreasing at $t=c$.
- If at $t=c, v^{\prime}(c)=a(c)>0$, then velocity is increasing at $t=c$.
- If at $t=c, v^{\prime}(c)=a(c)<0$, then velocity is decreasing at $t=c$.
- If the graph of $v(t)$ moves TOWARD the t axis, speed is decreasing.
- If the graph of $v(t)$ moves AWAY FROM the t axis, speed is increasing.
- Example: If a particle moves along the x-axis such that for $t \geq 0$, its position is give by, $x(t)=\frac{1}{3} t^{3}-4 t^{2}+15 t-7$, at $t=4.5$, is the speed of the particle increasing or decreasing? At this time is the velocity of the particle increasing or decreasing? Justify your answers.
- IVT (The Intermediate Value Theorem)
- If $f(x)$ is continuous on a closed interval $[a, b]$, then $f(x)$ takes on all y-values between $f(a)$ and $f(b)$.
- Example: If $f(x)$ is a differentiable function such that $f(-1)=-3$ and $f(4)=\frac{5}{6}$, explain why $f(x)$ must have a root on the interval $(-1,4)$.
- EVT (The Extreme Value Theorem)
- If $f(x)$ is continuous on a closed interval $[a, b]$, then $f(x)$ has both a Maximum and Minimum on the CLOSED interval $[a, b]$.
- Example: If a particle moves along the x-axis such that its position is give by, $x(t)=t^{2}-3 t+2$, on the interval $0 \leq t \leq 2$, at what time, t, is the particle farthest left? Farthest right?
- MVT (The Mean Value Theorem)
- If $f(x)$ is continuous on a closed interval $[a, b]$, and differentiable on the open interval (a, b), then there is an $x=c$ on the OPEN interval (a, b), where the slope of the tangent line (instantaneous rate of change/derivative) equals the slope of the secant line (average rate of change).
- USED TO SHOW THAT A DERIVATIVE EXISTS ON AN INTERVAL
- Set it up as $f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}$, then solve for x, then make sure x is in the OPEN interval!
- Example: If $f(x)=x^{3}+x-4$, on the interval $-1 \leq x \leq 2$, find the value of c guaranteed by the Mean Value Theorem.
- Example: If $f^{\prime}(x)$ is a differentiable function for all x, and if $f^{\prime}(5)=-2$ and $f^{\prime}(7)=4$, explain why there must be a $c, 5<c<7$ such that $f^{\prime \prime}(c)=3$.
- Geometric formulas to remember
- Volume of a Sphere: $V=\frac{4}{3} \pi r^{3}$

Surface area of a Sphere: $A=4 \pi r^{2}$

- Volume of a Cone: $V=\frac{\pi}{3} r^{2} h$

Volume of a Cylinder: $V=\pi r^{2} h$

- Surface area of a Cylinder: $A=2 \pi r^{2}+2 \pi r h$

Equilateral Triangle: $A=\frac{\sqrt{3}}{4} s^{2}$

- Trapezoid: $A=\frac{1}{2} \Delta x\left(y_{1}+y_{2}\right)$

Rectangle: $A=h \cdot w$

- Justifying relative extrema using the First Derivative test and Second Derivative Test
- First Derivative Test (at a critical point, $(c, f(c))$)
- "Since $f^{\prime}(c)=0$ (or $f^{\prime}(c)=D N E$), and since $f^{\prime}(x)$ changes from positive to negative at $x=c, f(x)$ has a Relative (local) Maximum at $x=c .$,
- "Since $f^{\prime}(c)=0$ (or $f^{\prime}(c)=D N E$), and since $f^{\prime}(x)$ changes from negative to positive at $x=c, f(x)$ has a Relative (local) Minimum at $x=c . "$
- Second Derivative Test (at a critical value $(c, f(c))$)
- "Since $f^{\prime}(c)=0$ (or $f^{\prime}(c)=D N E$), and since $f^{\prime \prime}(c)<0, f(x)$ has a Relative (local) Maximum at $x=c$."
- "Since $f^{\prime}(c)=0$ (or $f^{\prime}(c)=D N E$), and since $f^{\prime \prime}(c)>0, f(x)$ has a Relative (local) Minimum at $x=c$."
- Justifying an inflection point at a p.i.v. (possible inflection value)
- If $f(c)$ is defined, and either $f^{\prime \prime}(c)=0$ or $f^{\prime \prime}(c)=D N E$, then $f(x)$ has an inflection point at $(c, f(c))$ if $f^{\prime \prime}$ changes from positive to negative at $x=c$ or negative to positive at $x=c$.
- Example: A continuous function $f(x)$ has a second derivative $f^{\prime \prime}(x)=\frac{|x-3|}{x-3}$. Determine if $f(x)$ has an inflection value or not at $x=3$. Justify.
- Cross-sectional volume magic numbers
- Squares: Equilateral Triangles: Semicircles: Rectangles with height n times the base
- Quarter Circles: Isos Rt Triangle, Leg in Base: Isos Rt Triangle, Hypot in Base:
- Inverse Trig Integral formulas
- $\int \frac{d u}{a^{2}+u^{2}}=$
$\int \frac{d u}{\sqrt{a^{2}-u^{2}}}=$
$\int \frac{d u}{u \sqrt{u^{2}-a^{2}}}=$
- Examples:
$\int \frac{1}{x^{2}+5} d x=$
$\int \frac{5}{\sqrt{7-9 x^{2}}} d x=$
$\int \frac{1}{\sqrt{e^{2 x}-2}} d x=$
- Convergence Tests (used also to determine endpoints of intervals of convergence)
- nth term test for divergence
- Geometric series
p-series
Direct/Limit Comparison Test
- Integral Test

Ratio Test
Alternating Series Test/Error

- Pen or Pencil on the exam???
- 3-decimal accuracy (round or truncate). Store non-exact answers needed for future calculations and LABEL THEM ON YOUR PAPER. Avoid duplicate letters. NEVER use an approximate answer to calculate a subsequent value.
- Implicit Differentiation-your derivative will have both x and y in it.
- You will have as many $\frac{d y}{d x}$'s in your derivative as you have y 's in your equation.
- Look to solve for y first, especially if your answer choices are in terms of x only and/or you are finding an actual value and are only given $x=a$.
- When solving for $\frac{d y}{d x}$, if you ever end up with an answer like $\frac{d y}{d x}=\frac{a-b}{c-d}$, realize that this is equivalent to $\frac{d y}{d x}=\frac{b-a}{d-c}$.
- When finding a second derivative (or higher order derivative) implicitly, if the instructions say "in terms of x and y," be sure to plug in your $\frac{d y}{d x}$ expression into your final answer.
- Parenthesis are your best friends-it's better to have them and not need them than to need them and not have them. This is especially true for:

$$
\begin{array}{lc}
\circ \int_{a}^{b} f(x) d x=k[(f(b))-(f(a))] & \int_{a}^{b}[f(x)+g(x)] d x \\
\circ \quad \pi \int_{a}^{b}\left[(R(x))^{2}-(r(x))^{2}\right] d x & \lim _{h \rightarrow 0} \frac{\left((x+h)^{2}-2(x+h)+1\right)-\left(x^{2}-2 x\right)+1}{h}= \\
& 5-\cos ^{2} x=5-\left(1-\sin ^{2} x\right) \\
\frac{5}{2-\sqrt{x-3}} \cdot \frac{2+\sqrt{x-3}}{2+\sqrt{x-3}}
\end{array}
$$

- Cusp Alert!
- If you have a variable raised to a power that is between zero and one, you will have a continuous function that is not differentiable. The root of the term with the alerted power will be a critical value of the function!
- Example: Find the critical values of $f(x)=x^{2 / 3}-x$
- Pronouns. Don't Use Pronouns. Don't be vague, ambiguous, or unclear either.
- Don't say things like, " . . . since it changes from positive to negative . . .," "since the graph is increasing," or "the function changes signs there."
- Be explicit. Say what you mean and mean what you say.
- Don't waste time erasing. If you draw a line through something, it becomes "invisible" to the AP graders. Why So Serious?, We Are Sparta.
- Don't draw a line through anything on a free response or erase anything unless you have the time and intention of replacing it with something else. Something is better than nothing. Never leave anything blank, whether it's a M.C. or F.R. question. You EARN points on this test, not lose points.
- Don't let a wrong answer on one part of a F.R. question keep you from getting credit on subsequent parts. Using your wrong answer correctly, making up a reasonable equation to work with, or even attaching units to a number can get you points. NEVER give up. NEVER surrender.
- You don't need to simplify your numeric answers on the free response (unless the instructions explicitly tell you to approximate it to 3 decimals or ask you to "show" that a number equals a given number), but you MUST indicate your numeric methods to get credit. This especially goes for integral approximations from a table of values, difference quotients, and using areas from a graph to approximate integrals.
- Breath, Relax, Smile, and get that 5!

