I. B
 6. D

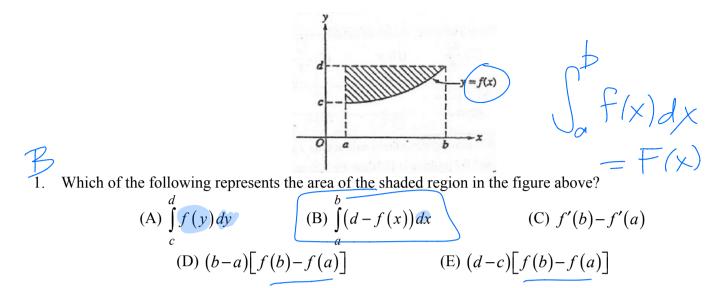
 2. A
 7. C

 3. A
 8. D

 4. D
 9. C

 5. D
 10. C

AB Review 01, No Calculator Permitted

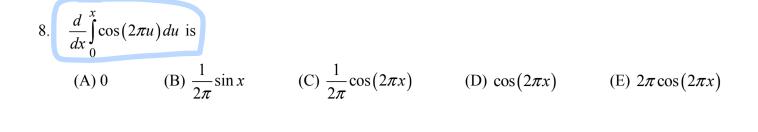


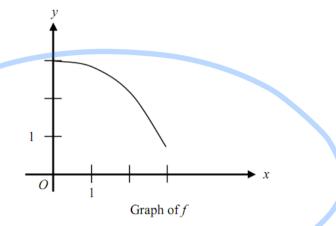
2.
$$\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{1}{2} + \frac$$

3.
$$\int \frac{3x^2}{\sqrt{x^3 + 1}} dx =$$

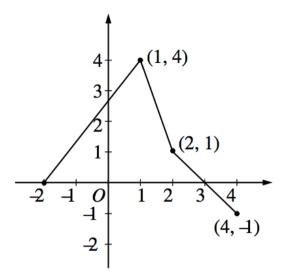
(A) $2\sqrt{x^3 + 1} + C$ (B) $\frac{3}{2}\sqrt{x^3 + 1} + C$ (C) $\sqrt{x^3 + 1} + C$ (D) $\ln\sqrt{x^3 + 1} + C$ (E) $\ln(x^3 + 1) + C$

7. The acceleration of a particle moving along the x-axis at time t is given by a(t) = 6t - 2. If the velocity is (A) $9t^2 + 1$ (B) $3t^2 - 2t + 4$ (C) $t^3 - t^2 + 4t + 6$ (D) $t^3 - t^2 + 9t - 20$ (E) $36t^3 - 4t^2 - 77t + 55$ $V(t) = 3t^2 - 2t + c$ 25 = 27 - 6 + c $V(t) = 3t^2 - 2t + 4$ $V(t) = 3t^2 - 2t + 4$ $V(t) = 3t^2 - 2t + 4$





- 9. The graph of the function f is shown above for $0 \le x \le 3$. Of the following, which has the least value? (A) $\int_{-3}^{3} f(x) dx$
 - (B) Left Riemann sum approximation of $\int_{1}^{3} f(x) dx$ with 4 subintervals of equal length. (C) Right Riemann sum approximation of $\int_{1}^{3} f(x) dx$ with 4 subintervals of equal length. (D) Midpoint Riemann sum approximation of $\int_{1}^{3} f(x) dx$ with 4 subintervals of equal length. (E) Trapezoidal sum approximation of $\int_{1}^{3} f(x) dx$ with 4 subintervals of equal length.
- 10. What is the minimum value of $f(x) = x \ln x$?
 - (A) -e (B) -1 (C) $-\frac{1}{e}$ (D) 0 (E) f(x) has no minimum value.



11. (1999, AB-5) The graph of the function *f*, consisting of three line segments, is shown above. Let g(x) = ∫₁^x f(t) dt.
(a) Compute g(4) and g(-2).

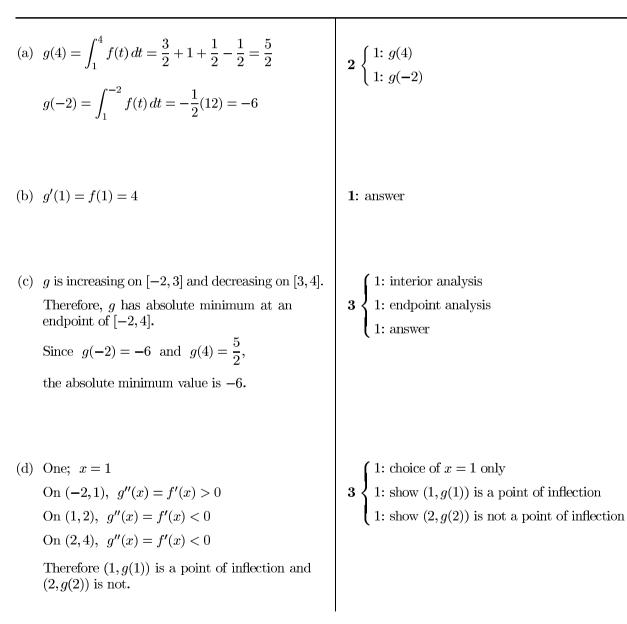
(b) Find the instantaneous rate of change of g, with respect to x, at x = 1.

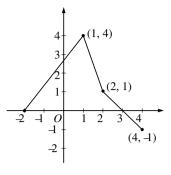
(c) Find the absolute minimum value of g on the closed interval [-2, 4]. Justify your answer.

(d) The second derivative of g is not defined at x = 1 and x = 2. How many of these values are x-coordinates of points of inflection of the graph of g? Justify your answer.

AB-5 / BC-5

- 5. The graph of the function f, consisting of three line segments, is given above. Let $g(x) = \int_{1}^{x} f(t) dt$.
 - (a) Compute g(4) and g(-2).
 - (b) Find the instantaneous rate of change of g, with respect to x, at x = 1.
 - (c) Find the absolute minimum value of g on the closed interval [-2, 4]. Justify your answer.
 - (d) The second derivative of g is not defined at x = 1 and x = 2. How many of these values are x-coordinates of points of inflection of the graph of g? Justify your answer.





- 12. (1998, AB-4) Let f be a function with f(1) = 4 such that for all points (x, y) on the graph of f the slope is given by $\frac{3x^2 + 1}{2y}$.
 - (a) Find the slope of the graph of f at the point where x = 1.

(b) Write an equation for the line tangent to the graph of f at x = 1, and use it to approximated f(1.2).

(c) Find f(x) by solving the separable differential equation $\frac{dy}{dx} = \frac{3x^2 + 1}{2y}$ with the initial condition f(1) = 4.

(d) Use your solution from part (c) to find f(1.2).

1998 AP Calculus AB Scoring Guidelines

- 4. Let f be a function with f(1) = 4 such that for all points (x, y) on the graph of f the slope is given by $\frac{3x^2 + 1}{2y}$.
 - (a) Find the slope of the graph of f at the point where x = 1.
 - (b) Write an equation for the line tangent to the graph of f at x = 1 and use it to approximate f(1.2).
 - (c) Find f(x) by solving the separable differential equation $\frac{dy}{dx} = \frac{3x^2 + 1}{2y}$ with the initial condition f(1) = 4.

(d) Use your solution from part (c) to find f(1.2).

(a) $\frac{dy}{dx} = \frac{3x^2 + 1}{2y}$	1: answer
$\frac{dy}{dx}\Big \begin{array}{c} x = 1 \\ y = 4 \end{array} = \frac{3+1}{2 \cdot 4} = \frac{4}{8} = \frac{1}{2}$	
(b) $y - 4 = \frac{1}{2}(x - 1)$ $f(1.2) - 4 \approx \frac{1}{2}(1.2 - 1)$	$2 \begin{cases} 1: & \text{equation of tangent line} \\ 1: & \text{uses equation to approximate } f(1.2) \end{cases}$
$f(1.2) \approx 0.1 + 4 = 4.1$ (c) $2y dy = (3x^2 + 1) dx$ $\int 2y dy = \int (3x^2 + 1) dx$ $y^2 = x^3 + x + C$ $4^2 = 1 + 1 + C$ 14 = C $y^2 = x^3 + x + 14$ $y = \sqrt{x^3 + x + 14}$ is branch with point ($f(x) = \sqrt{x^3 + x + 14}$	Note: max $0/5$ if no separation of variables Note: max $1/5$ [1-0-0-0-0] if substitutes value(s) for x, y , or dy/dx before
(d) $f(1.2) = \sqrt{1.2^3 + 1.2 + 14} \approx 4.114$	antidifferentiation1: answer, from student's solution to the given differential equation in (c)