$\begin{array}{lllll}\text { I. } & \mathrm{D} & \text { 6. } & \mathrm{C} & \\ \text { 2. } & \mathrm{E} & \text { 7. } & \mathrm{E} & \\ \text { 3. } & \mathrm{D} & \text { 8. } & \mathrm{B} & \\ \text { 4. } & \mathrm{B} & \text { 9. } & \mathrm{D} & \\ \text { 5. } & \mathrm{A} & \text { I0. } & \mathrm{C} & \end{array}$
1.
$\int_{0}^{1} e^{-4 x} d x=$
A) $\frac{-e^{-4}}{4}$
B) $-4 e^{-4}$
C) $e^{-4}-1$
D) $\frac{1}{4}-\frac{e^{-4}}{4}$
E) $4-4 e^{-4}$
2.

For $x \geq 0$, the horizontal line $y=2$ is an asymptote for the graph of the function f. Which of the following statements must be true?
A) $f(0)=2$
B) $f(x) \neq 2$ for all $x \geq 0$
C) $f(2)$ is undefined
D) $\lim _{x \rightarrow 2} f(x)=\infty$
E) $\lim f(x)=2$
$\int_{0}^{\frac{\pi}{4}} \sin (x) d x=$
A) $-\frac{\sqrt{2}}{2}$
B) $\frac{\sqrt{2}}{2}$
C) $-\frac{\sqrt{2}}{2}-1$
D) $-\frac{\sqrt{2}}{2}+1$
E) $\frac{\sqrt{2}}{2}-1$
4.

The graph of f^{\prime}, the derivative of the function f, is shown above. Which of the following statements is true about f ?
A) f is decreasing for $-1 \leq x \leq 1$.
B) f is increasing for $-2 \leq x \leq 0$.
C) f is increasing for $1 \leq x \leq 2$.
D) f has a local minimum at $\mathrm{x}=0$.
E) f is not differentiable at $\mathrm{x}=-1$ and $\mathrm{x}=1$.

If $f(x)=\ln \left(x+4+e^{-3 x}\right)$, then $f^{\prime}(0)$ is
A) $-\frac{2}{5}$
B) $\frac{1}{5}$
C) $\frac{1}{4}$
D) $\frac{2}{5}$
E) nonexistent
6.

Using the substitution $u=2 x+1, \int_{0}^{2} \sqrt{2 x+1} d x$ is equivalent to
A) $\frac{1}{2} \int_{-1 / 2}^{1 / 2} \sqrt{u} d u$
B) $\frac{1}{2} \int_{0}^{2} \sqrt{u} d u$
C) $\frac{1}{2} \int_{1}^{5} \sqrt{u} d u$
D) $\int_{0}^{2} \sqrt{u} d u$
E) $\int_{1}^{5} \sqrt{u} d u$
7.

The rate of change of the volume, V, of water in a tank with respect to time, t, is directly proportional to the square root of the volume. Which of the following is a differential equation that describes this relationship?
A) $V(t)=k \sqrt{t}$
B) $V(t)=k \sqrt{V}$
C) $\frac{d V}{d t}=k \sqrt{t}$
D) $\frac{d V}{d t}=\frac{k}{\sqrt{V}}$
E) $\frac{d V}{d t}=k \sqrt{V}$
8.

The function f has the property that $f(x), f^{\prime}(x), f^{\prime \prime}(x)$ and are negative for all real values x. Which of the following could be the graph of f ?
(A)

(C)

(E)

(B)

(D)

9.

Let f be the function with derivative given by $f^{\prime}(x)=x^{2}-\frac{2}{x}$. On which of the following intervals is f decreasing?
A) $(-\infty,-1]$ only
B) $(-\infty, 0)$
C) $[-1,0)$ only
D) $(0, \sqrt[3]{2}]$
E) $[\sqrt[3]{2}, \infty)$
10.

If the line tangent to the graph of the function f at the point $(1,7)$ passes through the point $(-2,-2)$, then $f^{\prime}(1)$ is
A) -5
B) 1
C) 3
D) 7
E) undefined
11. (2013, AB-3)

t (minutes)	0	1	2	3	4	5	6
$C(t)$ (ounces)	0	5.3	8.8	11.2	12.8	13.8	14.5

Hot water is dripping through a coffeemaker, filling a large cup with coffee. The amount of coffee in the cup at time $t, 0 \leq t \leq 6$, is given by a differentiable function C, where t is measured in minutes. Selected values of $C(t)$, measured in ounces, are given in the table above.
(a) Use the data in the table to approximate $C^{\prime}(3.5)$. Show the computations that lead to your answer, and indicate units of measure.
(b) Is there a time $t, 2 \leq t \leq 4$, at which $C^{\prime}(t)=2$? Justify your answer.
(c) Use a midpoint sum with three subintervals of equal length indicated by the data in the table to approximate the value of $\frac{1}{6} \int_{0}^{6} C(t) d t$. Using correct units, explain the meaning of $\frac{1}{6} \int_{0}^{6} C(t) d t$ in the context of the problem.
(d) The amount of coffee in the cup, in ounces, is modeled by $B(t)=16-16 e^{-0.4 t}$. Using this model, find the rate at which the amount of coffee in the cup is changing when $t=5$.

AP ${ }^{\circledR}$ CALCULUS AB 2013 SCORING GUIDELINES

Question 3

t (minutes)	0	1	2	3	4	5	6
$C(t)$ (ounces)	0	5.3	8.8	11.2	12.8	13.8	14.5

Hot water is dripping through a coffeemaker, filling a large cup with coffee. The amount of coffee in the cup at time $t, 0 \leq t \leq 6$, is given by a differentiable function C, where t is measured in minutes. Selected values of $C(t)$, measured in ounces, are given in the table above.
(a) Use the data in the table to approximate $C^{\prime}(3.5)$. Show the computations that lead to your answer, and indicate units of measure.
(b) Is there a time $t, 2 \leq t \leq 4$, at which $C^{\prime}(t)=2$? Justify your answer.
(c) Use a midpoint sum with three subintervals of equal length indicated by the data in the table to approximate the value of $\frac{1}{6} \int_{0}^{6} C(t) d t$. Using correct units, explain the meaning of $\frac{1}{6} \int_{0}^{6} C(t) d t$ in the context of the problem.
(d) The amount of coffee in the cup, in ounces, is modeled by $B(t)=16-16 e^{-0.4 t}$. Using this model, find the rate at which the amount of coffee in the cup is changing when $t=5$.
(a) $C^{\prime}(3.5) \approx \frac{C(4)-C(3)}{4-3}=\frac{12.8-11.2}{1}=1.6$ ounces $/ \mathrm{min}$
(b) C is differentiable $\Rightarrow C$ is continuous (on the closed interval) $\frac{C(4)-C(2)}{4-2}=\frac{12.8-8.8}{2}=2$
Therefore, by the Mean Value Theorem, there is at least one time $t, 2<t<4$, for which $C^{\prime}(t)=2$.
(c) $\frac{1}{6} \int_{0}^{6} C(t) d t \approx \frac{1}{6}[2 \cdot C(1)+2 \cdot C(3)+2 \cdot C(5)]$

$$
=\frac{1}{6}(2 \cdot 5.3+2 \cdot 11.2+2 \cdot 13.8)
$$

$$
=\frac{1}{6}(60.6)=10.1 \text { ounces }
$$

$\frac{1}{6} \int_{0}^{6} C(t) d t$ is the average amount of coffee in the cup, in ounces, over the time interval $0 \leq t \leq 6$ minutes.
(d) $B^{\prime}(t)=-16(-0.4) e^{-0.4 t}=6.4 e^{-0.4 t}$
$B^{\prime}(5)=6.4 e^{-0.4(5)}=\frac{6.4}{e^{2}}$ ounces $/ \mathrm{min}$
$2:\left\{\begin{array}{l}1: \text { approximation } \\ 1: \text { units }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \frac{C(4)-C(2)}{4-2} \\ 1: \text { conclusion, using MVT }\end{array}\right.$
$3:\left\{\begin{array}{l}1: \text { midpoint sum } \\ 1: \text { approximation } \\ 1: \text { interpretation }\end{array}\right.$
$2:\left\{\begin{array}{l}1: B^{\prime}(t) \\ 1: B^{\prime}(5)\end{array}\right.$
12. (2013, AB-4)

The figure above shows the graph of f^{\prime}, the derivative of a twice-differentiable function f, on the closed interval $0 \leq x \leq 8$. The graph of f^{\prime} has horizontal tangent lines at $x=1, x=3$, and $x=5$. The areas of the regions between the graph of f^{\prime} and the x-axis are labeled in the figure. The function f is defined for all real numbers and satisfies $f(8)=4$.
(a) Find all values of x on the open interval $0<x<8$ for which the function f has a local minimum. Justify your answer.
(b) Determine the absolute minimum value of f on the closed interval $0 \leq x \leq 8$. Justify your answer.
(c) On what open intervals contained in $0<x<8$ is the graph of f both concave down and increasing? Explain your reasoning.
(d) The function g is defined by $g(x)=(f(x))^{3}$. If $f(3)=-\frac{5}{2}$, find the slope of the line tangent to the graph of g at $x=3$.

AP ${ }^{\circledR}$ CALCULUS BC 2013 SCORING GUIDELINES

Question 4

The figure above shows the graph of f^{\prime}, the derivative of a twice-differentiable function f, on the closed interval $0 \leq x \leq 8$. The graph of f^{\prime} has horizontal tangent lines at $x=1, x=3$, and $x=5$. The areas of the regions between the graph of f^{\prime} and the x-axis are labeled in the figure. The function f is defined for all real numbers and satisfies $f(8)=4$.
(a) Find all values of x on the open interval $0<x<8$ for which the function f has a local minimum. Justify your answer.
(b) Determine the absolute minimum value of f on the

Graph of f^{\prime} closed interval $0 \leq x \leq 8$. Justify your answer.
(c) On what open intervals contained in $0<x<8$ is the graph of f both concave down and increasing? Explain your reasoning.
(d) The function g is defined by $g(x)=(f(x))^{3}$. If $f(3)=-\frac{5}{2}$, find the slope of the line tangent to the graph of g at $x=3$.
(a) $x=6$ is the only critical point at which f^{\prime} changes sign from negative to positive. Therefore, f has a local minimum at $x=6$.
(b) From part (a), the absolute minimum occurs either at $x=6$ or at an endpoint.

$$
\begin{aligned}
f(0) & =f(8)+\int_{8}^{0} f^{\prime}(x) d x \\
& =f(8)-\int_{0}^{8} f^{\prime}(x) d x=4-12=-8 \\
f(6) & =f(8)+\int_{8}^{6} f^{\prime}(x) d x \\
& =f(8)-\int_{6}^{8} f^{\prime}(x) d x=4-7=-3
\end{aligned}
$$

$$
f(8)=4
$$

The absolute minimum value of f on the closed interval $[0,8]$ is -8 .
(c) The graph of f is concave down and increasing on $0<x<1$ and $3<x<4$, because f^{\prime} is decreasing and positive on these intervals.
(d) $g^{\prime}(x)=3[f(x)]^{2} \cdot f^{\prime}(x)$
$g^{\prime}(3)=3[f(3)]^{2} \cdot f^{\prime}(3)=3\left(-\frac{5}{2}\right)^{2} \cdot 4=75$

1 : answer with justification
$3:\left\{\begin{array}{l}1: \text { considers } x=0 \text { and } x=6 \\ 1: \text { answer } \\ 1: \text { justification }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { answer } \\ 1: \text { explanation }\end{array}\right.$
$3:\left\{\begin{array}{l}2: g^{\prime}(x) \\ 1: \text { answer }\end{array}\right.$

