BC Review FINAL, NO Calculator Permitted (unless stated otherwise) Do all work on separate notebook paper

1. (a) $\int x \sin(2x) dx = -\frac{1}{2} x \cos 2x + \frac{1}{4} \sin 2y + C$ By parts (b) $\int \frac{dx}{x^2 - 6x + 8} =$ $\int \frac{1}{(x - 4)(x - 2)} dx$ $\int \frac{1}{(x - 4)(x - 2)} dx$ $\int \frac{1}{(x - 4)(x - 2)} dx$ $\int \frac{1}{2} \ln |x - 4| - \ln |x - 2| + C$

2. Write an integral expression which gives the area of the region inside the polar curve $r = 4\cos\theta$ and outside r = 2.

3. Given $\frac{dy}{dx} = \frac{xy}{2}$. Let f(x) be the particular solution to the given differential equation with initial condition f(0) = 3. Use Euler's method starting at x = 0, with a step size of 0.1, to approximate f(0.2).

4. If
$$3xy + 2x = 1 - 2y$$
, then when $x = -1$, $\frac{dy}{dx} = ?$
 $(2x = -1: -3y - 2 = 1 - 2y)$
 $-3 = y$
 S_{1} , $p + is$ $(-1, -3)$
 $\frac{d}{dx}: 3y + 3x \frac{dy}{dx} + 2 = 0 - 2\frac{dy}{dx}$
 $3x \frac{dy}{dx} + 2\frac{dy}{dx} = -2 - 3y$
 $\frac{dy}{dx}(3x + 2) = -2 - 3y$
 $\frac{dy}{dx}(3x + 2) = -2 - 3y$
 $\frac{dy}{dx} = -2 - 3y$

5. If in the triangle at right, θ decreases by 4 rad/min, at what rate is x changing in

In the thing when
$$x = 4?$$

 $d = -4$
 $d = -4$

5,

6. Write an integral equation which gives the length of the path described by the parametric equations $x = \cos^{3} t \text{ and } y = \sin^{3} t \text{ for } 0 \le t \le \frac{\pi}{2}.$ $\mathcal{L} = \text{Distance Travelled} = \int_{a}^{b} \sqrt{\left[\chi'(t)\right]^{2} + \left[y'(t)\right]^{2}} dt$ $\chi' = 3\cos^{2} t \cdot (-\sin t) \quad y' = 3\sin^{2} t \cdot (\cos t)$ $\mathcal{L} = \int_{0}^{\pi/2} \sqrt{\left(-3\cos^{2} t \sin t\right)^{2} + \left(3\sin^{2} t \cdot \cos t\right)^{2}} dt$ 7. If f is a function such that $f'(x) = \sin(x^2)$, then the coefficient of x^7 in the Taylor series for f(x) about x = 0 is?

$$Sin_{X} = \chi - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \cdots$$

$$f'_{X} = \sin(x^{2}) = \chi^{2} - \frac{x^{6}}{3!} + \frac{x'^{0}}{5!} - \cdots$$

$$\frac{f(x)}{5!} = \zeta + \frac{x^{3}}{3} - \frac{x^{7}}{7\cdot3!} + \frac{x''}{11\cdot5!} - \cdots$$

$$coefficient of x^{7} is - \frac{1}{7\cdot3!} = \frac{-1}{42}$$

8. If
$$\frac{dy}{dx} = y \sec^2 x$$
 and $y = 5$ when $x = 0$, then $y = ?$
 $\frac{1}{y} dy = \sec^2 x dy$
 $\ln |y| = -\tan x + C$
 $e^{\ln|y|} = e^{\tan x} \cdot e^{C}$, $Le + C = e^{C}$
 $y = C = e^{\tan x}$ (gen solution)
 $y = C = ce^{-\tan x}$
 $5 = Ce^{-5}$
 $5 = Ce^{-5}$
 $5 = ce^{-5}$
 $5 = ce^{-5}$

C

9. (a) $\int \tan^2 x dx =$ $\int (\sec^2 x - i) dx$ fanx - x + C $\times theorem big Main D!$

(b)
$$\int \sin^2 x dx = \int \frac{1}{2} \left(1 - \cos 2x \right) dx$$
$$\frac{1}{2} \left[x - \frac{1}{2} \sin 2x \right] + C$$
$$\frac{1}{4} \left[2x - \sin 2x \right] + C$$
$$\frac{1}{2} \left[x - \frac{1}{4} \sin 2x + C \right]$$

$$10. \lim_{h \to 0} \frac{\cos\left(\frac{\pi}{2} + h\right) - \cos\left(\frac{\pi}{2}\right)}{h} = f'(\frac{\pi}{2}), \text{ for } f(x) = \cos x$$

$$\frac{br}{0}, \frac{b}{2} \int H\partial \rho + \frac{1}{2} \int \partial \rho + \frac{1}{2}$$

11. The coefficient of x^3 in the Taylor series for e^{2x} about x = 0 is?

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \cdots$$

$$e^{2x} = 1 + (2x) + \frac{(2x)^{2}}{2!} + \frac{(2x)^{3}}{3!} + \cdots$$

$$= 1 + 2x + \frac{4x^{2}}{2!} + \frac{8x^{3}}{3!} + \cdots$$

$$\frac{8}{3!} = \frac{8}{3!} = \frac{4}{3!}$$
So for the field of x^{3} is $\frac{8}{3!} = \frac{8}{3!2!} = \frac{4}{3!}$

12. What are all values of x for which the series $\sum_{n=1}^{\infty} \frac{(x-2)^n}{n3^n}$ converge?

$$\frac{Patio Test}{l = 1}$$

$$\frac{l}{l = 1} = \frac{(x-2)^{n+1}}{(n+1)3^{n+1}} \cdot \frac{n \cdot 3^{n}}{(x-2)^{n}}$$

$$\frac{l}{l = 5t endpoints}$$

$$\frac{1}{x = -1} = \frac{(-3)^{n}}{n \cdot 3^{n}}$$

$$\frac{(-1)^{n} 3^{n}}{(-1)^{n} 3^{n}}}$$

B 13. Which of the following converge? (A) None (B) II only (C) III only (D) I and II only (E) I and III only $\begin{array}{c}
 \int \sum_{n=1}^{\infty} \frac{n}{n+2} & \text{II.} \sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n} & \text{MI.} \sum_{n=1}^{\infty} \frac{1}{n} \\
 (A) \text{ None (B) II only (C) III only (D) I and II only (E) I and III only (E) I and II only (E) I and III only (E) I and II on$

14. The Taylor series about x = 5 for a certain function f converges to f(x) for all x in its interval of convergence. The *n*th derivative of f at x = 5 is given by

1000

$$f^{(n)}(5) = \frac{(-1)^n n!}{2^n (n+2)}$$
 and $f(5) = \frac{1}{2}$

Show that the sixth-degree Taylor polynomial for f about x = 5 approximates f(6) with an error less than $\frac{1}{2}$

This is an alternating Services
5b,
$$\left| \frac{1}{6}(6) - f(6) \right| \leq \left| \frac{f^{(7)}(6)}{7!} \left(\frac{1}{6-5} \right)^{+} \right|$$

Ist unused term
 $e_{X=6}$
 $= \left| \frac{7!}{2^{+}(7+2)} \frac{7}{7!} \right|^{-1}$
 $= \frac{1}{9\cdot2^{7}}$
 $= \frac{1}{1152} < \frac{1}{1000}$

- 15. The population P(t) of unicorns in a forest satisfies the logistic differential equation $\frac{dP}{dt} = 3P \frac{P^2}{6000}$.
 - (a) If P(0) = 4000, what is $\lim_{t \to \infty} P(t)$? Is the solution curve increasing or decreasing? Justify your answer.
 - (b) If P(0) = 10,000, what is $\lim_{t \to \infty} P(t)$? Is the solution curve increasing or decreasing? Justify your answer.
 - (c) If P(0) = 20,000, what is $\lim_{t \to \infty} P(t)$? Is the solution curve increasing or decreasing? Justify your answer.
 - (d) If P(0) = 4000, what is the population when it is growing the fastest? Where is the solution curve concave up? Concave down? Justify your answer.

$$\frac{dF}{dL} = 3P - \frac{P^2}{600}$$

$$\frac{dP}{dL} = \frac{1}{6000}P\left(18,000 - P\right)$$

$$\frac{dP}{dL} = \frac{1}{6000}(18000 - 9000) = \frac{3}{2}(900) = 13.5000 \text{ training time}}{\frac{dP}{dL}}$$

$$\frac{dP}{6000}(18000 - 9000) = \frac{3}{2}(900) = 13.5000 \text{ training time}}{\frac{dP}{dL}}$$

$$\frac{dP}{6000}(18000 - 9000) = \frac{3}{2}(900) = 13.5000 \text{ training time}}{\frac{dP}{dL}}$$

$$\frac{dP}{6000}(18000 - 9000) = \frac{3}{2}(900) = 13.5000 \text{ training time}}{\frac{dP}{dL}}$$

$$\frac{dP}{6000}(18000 - 9000) = \frac{3}{2}(900) = 13.5000 \text{ training time}}{\frac{dP}{dL}}$$

$$\frac{dP}{6000}(18000 - 9000) = \frac{3}{2}(900) = 13.5000 \text{ training time}}{\frac{dP}{dL}}$$

$$\frac{dP}{6000}(18000 - 9000) = \frac{3}{2}(900) = 13.5000 \text{ training time}}{\frac{dP}{dL}}$$

$$\frac{dP}{6000}(18000 - 9000) = \frac{3}{2}(900) = 13.5000 \text{ training time}}{\frac{dP}{dL}}$$

$$\frac{dP}{6000}(18000 - 9000) = \frac{3}{2}(900) = 13.5000 \text{ training time}}{\frac{dP}{dL}}$$

$$\frac{dP}{6000}(18000 - 9000) = \frac{3}{2}(900) = 13.5000 \text{ training time}}{\frac{dP}{dL}}$$

$$\frac{dP}{6000}(18000 - 9000) = \frac{3}{2}(900) = 13.5000 \text{ training time}}{\frac{dP}{dL}}$$

$$\frac{dP}{6000}(18000 - 9000) = \frac{3}{2}(900) = 13.5000 \text{ training time}}{\frac{dP}{dL}}$$

$$\frac{dP}{6000}(18000 - 9000) = \frac{3}{2}(900) = 13.50000 \text{ training time}}{\frac{dP}{dL}}$$

$$\frac{dP}{6000}(18000 - 9000) = \frac{3}{2}(900) = 10.50000 \text{ training time}}{\frac{dP}{dL}}$$

$$\frac{dP}{dL} = \frac{1}{6000}P\left(18000 - 10000 + 100000 \text{ training time}}{\frac{dP}{dL}}$$

$$\frac{dP}{dL} = \frac{1}{6000}P\left(18000 - 10000$$

16. (Calculator Permitted) Given $\frac{dy}{dt} = \cos(t^3)$ and $\frac{dy}{dt} = 3\sin(t^2)$ for $0 \le t \le 3$. At time t = 2, the object at position (4,5).

- (a) Find the speed of the object at time t = 2.
- (b) Find the total distance traveled by the object over the time interval $0 \le t \le 1$.
- (c) Find the position of the object at time t = 3.

(a) speed =
$$\sqrt{[x'(z)]^2 + [y'(z)]^2}$$

= 2.275
(b) Distance = $\mathcal{L} = \int_0^1 \sqrt{[x'(t)]^2 + [y'(t)]^2} dt$
= 1.458

$$(c) \vec{\leq} (3) = \langle \chi(3), \chi(3) \rangle$$

= $\langle 4 + \int_{2}^{3} \chi(4) dt, 5 + \int_{2}^{3} \chi(4) dt \rangle$
= $\langle 3.953, 4.906 \rangle$

17. (Calculator Permitted) Given $f(x) = \frac{1}{3} + \frac{2x}{9} + \frac{3x^2}{27} + \dots + \frac{(n+1)}{3^{n+1}}x^n + \dots$ (a) $\lim_{x \to 0} \frac{f(x) - \frac{1}{3}}{x}$. $f'(x) = \frac{2}{9} + \frac{1}{29}x + \dots + \frac{n(n+1)}{3^{n+1}}x^{n-1} + \dots$

(b) Write the first three nonzero terms and the general term for the infinite series that represents $\int f(x) dx$.

(c) Find the sum of the series found in part (b).

$$(6) \underbrace{2.5}_{X \to 0} \frac{f(x) - \frac{1}{3}}{X} = \frac{7}{9}$$

$$(6) \underbrace{2.5}_{X \to 0} \frac{f(x)}{X} = \frac{7}{9}$$

$$(7) \underbrace{1}_{X \to 0} \frac{f(x)}{1} = \frac{7}{9}$$

$$(7) \underbrace{1}_{Y \to 0} \frac{f(x)}{1} = \frac{1}{3} \underbrace{1}_{X \to 0} \underbrace{1}_{X \to 0}$$

(c) =
$$\left(\frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \cdots + \frac{1}{3^{n+1}} + \cdots\right) - (0)$$

= $\frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \cdots + \frac{1}{3^{n+1}}$
= $\frac{2}{3} - \frac{1}{3^{n+1}}$
= $\frac{2}{3} - \frac{1}{3^{n+1}}$
= $\frac{2}{3} - \frac{1}{3} - \frac{1}{3} + \frac{1}{3^{n+1}}$
(Geometric Series)
 $|r| - |\frac{1}{3}| - \frac{1}{3} < 1$
= $\frac{1}{3} - \frac{1}{3} < \frac{1}{3} + \frac{1}{3} + \frac{1}{3} < 1$
= $\frac{1}{3} - \frac{1}{3} < \frac{1}{3} - \frac{1}{3} < 1$

- 18. (Calculator Permitted) The function f has derivatives of all orders for all real numbers x. Assume that
 - $f(2) = 5, f'(2) = -3, f''(2) = 4, f'''(2) = -1, \text{ and } \left| f^{(4)}(x) \right| \le 3 \text{ for all } x \text{ in } [2, 2.2].$
 - (a) Write the third-degree Taylor polynomial for f about x = 2.
 - (b) Use your answer to (a) to approximate f(2.15). Give your answer correct to five decimal places.
 - (c) Use the Lagrange error bound on the approximation of f(2.15) to explain why $f(2.15) \neq 4.7$.

$$(a) f(x) = 5 - 3(x-2) + \frac{4}{2!} (x-2)^{2} - \frac{1}{3!} (x-2)^{3}$$

$$(b) f(2 \cdot 15) \approx T_{3}(2 \cdot 15) = 4 \cdot 59443 = A \cdot (s+ore)$$

$$(c) |f(2 \cdot 15) - T_{3}(2 \cdot 15)| = |\frac{5^{(4)}(z)}{4!} (2 \cdot 15 - 2)|$$

$$\leq |\frac{3}{24} (\cdot 15)^{4}| = 0 \cdot 00006328125 = B_{(3)02}$$

So $f(z, 15) \in [T_3(z, 15) - B, T_3(z, 15) + B]$ $f(z, 15) \in [A - B, A + B] = [4, 594374219, 4, 59450078]$ $S_0, f(z, 15) \neq 4.7 \text{ since } 4.7 \text{ is outside}$ He above interval.