BC Review FINAL, NO Calculator Permitted (unless stated otherwise)
Do all work on separate notebook paper
1.
(a) $\int x \sin (2 x) d x=-\frac{1}{2} x \cos 2 x+\frac{1}{4} \sin 2 x+C$
(b) $\int \frac{d x}{x^{2}-6 x+8}=$


$$
\begin{aligned}
& \int \frac{1}{(x-4)(x-2)} d x \\
& \int\left[\frac{1 / 2}{x-4}-\frac{1 / 2}{x-2}\right] d x \\
& \frac{1}{2}[\ln |x-4|-\ln |x-2|]+c \\
& \frac{1}{2} \ln \left|\frac{x-4}{x-2}\right|+c
\end{aligned}
$$

2. Write an integral expression which gives the area of the region inside the polar curve $r=4 \cos \theta$ and outside $r=2$.

$$
\begin{gathered}
\text { intersect } \\
\hline 4 \cos \theta=2 \\
\cos \theta=\frac{1}{2} \\
\theta=\frac{\pi}{3}
\end{gathered}
$$


using symmetry
Area $=\frac{1}{2} \int_{\alpha}^{\beta} r^{2} d \theta$
Area $=2\left[\frac{1}{2} \int_{0}^{\pi / 3}\left((4 \cos \theta)^{2}-(2)^{2}\right) d \theta\right]$
$=\int_{0}^{\pi / 3}\left(16 \cos ^{2} \theta-4\right) d \theta$
3. Given $\frac{d y}{d x}=\frac{x y}{2}$. Let $f(x)$ be the particular solution to the given differential equation with initial condition $f(0)=3$. Use Euler's method starting at $x=0$, with a step size of 0.1 , to approximate $f(0.2)$.

$$
\Delta x=0.1
$$


4. If $3 x y+2 x=1-2 y$, then when $x=-1, \frac{d y}{d x}=$ ?

$$
\begin{gathered}
c x=-1:-3 y-2=1-2 y \\
-3=y
\end{gathered}
$$

So, pt is $(-1,-3)$

$$
\begin{aligned}
& \frac{d}{d x}: 3 y+3 x \frac{d y}{d x}+2=0-2 \frac{d y}{d x} \\
& 3 x \frac{d y}{d x}+2 \frac{d y}{d x}=-2-3 y \\
& \frac{d y}{d x}(3 x+2)=-2-3 y \\
& \frac{d y}{d x}=\frac{-2-3 y}{3 x+2} \text { or }-\frac{3 y+2}{3 x+2}
\end{aligned}
$$

5. If in the triangle at right, $\theta$ decreases by $4 \mathrm{rad} / \mathrm{min}$, at what rate is $x$ changing in units $/ \mathrm{min}$ when $x=4$ ?

$$
\frac{d \theta}{d t}=-4 \quad \frac{d x}{d t}=?
$$



$$
\begin{gathered}
\sin \theta=\frac{x}{s} \\
\frac{d}{d t}: \cos \theta \cdot \frac{d \theta}{d t}=\frac{1}{5} \cdot \frac{d x}{d t}
\end{gathered}
$$

When:
$x=4$ :

$$
\begin{aligned}
& \left(\frac{3}{5}\right)(-4)=\frac{1}{5} \frac{d x}{d t} \\
& \frac{d x}{d t}=-12 \mathrm{rad} / \mathrm{min} *
\end{aligned}
$$

* Thames, Col. Bid, s10/19

6. Write an integral equation which gives the length of the path described by the parametric equations

$$
\begin{aligned}
& x=\cos ^{3} t \text { and } y=\sin ^{3} t \text { for } 0 \leq t \leq \frac{\pi}{2} . \\
& \mathcal{L}=\text { Distance Travelled }=\int_{a}^{1} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t \\
& x^{\prime}=3 \cos ^{2} t \cdot(-\sin t) \quad y^{\prime}=3 \sin ^{2} t \cdot(\cos t)
\end{aligned}
$$

$$
L=\int_{0}^{\pi / 2} \sqrt{\left(-3 \cos ^{2} t \sin t\right)^{2}+\left(3 \sin ^{2} t \cos ^{2} t\right)^{2}} d t
$$

7. If $f$ is a function such that $f^{\prime}(x)=\sin \left(x^{2}\right)$, then the coefficient of $x^{7}$ in the Taylor series for $f(x)$ about $x=0$ is?

$$
\begin{aligned}
& \quad \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots \\
& f^{\prime}(x)=\sin \left(x^{2}\right)=x^{2}-\frac{x^{6}}{3!}+\frac{x^{10}}{5!}-\cdots \\
&
\end{aligned}
$$

* Thames, Goy B!

$$
\begin{aligned}
& f(x)=C+\frac{x^{3}}{3}-\frac{x^{7}}{7 \cdot 3!}+\frac{x^{11}}{11 \cdot 5!}-\cdots \\
& \text { coefficient of } x^{7} \text { is }-\frac{1}{7 \cdot 3!}=\frac{-1}{42}
\end{aligned}
$$

8. If $\frac{d y}{d x}=y \sec ^{2} x$ and $y=5$ when $x=0$, then $y=$ ?

$$
\begin{aligned}
& \frac{1}{y} d y=\sec ^{2} x d x \\
& \ln |y|=\tan x+C \\
& e^{\ln |y|}=e^{(\tan x+c)} \\
& |y|=e^{\tan x} \cdot e^{c}, \text { Let } C=e^{c} \\
& y=C e^{\tan x} \text { (gen solution) }
\end{aligned}
$$

$$
\begin{aligned}
C(0,5): S & =C e^{\tan 0} \\
S & =C e^{0} \\
C & =5
\end{aligned}
$$

$$
\text { So, } y=5 e^{\tan x}
$$

9. (a)

$$
\begin{aligned}
& \int \tan ^{2} x d x= \\
& \int\left(\sec ^{2} x-1\right) d x \\
& \tan x-x+C \\
& \text { *Thananks, HA Pin } D!
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) } \int \sin ^{2} x d x= \\
& \int \frac{1}{2}(1-\cos 2 x) d x \\
& \frac{1}{2}\left[x-\frac{1}{2} \sin 2 x\right]+C \\
& \frac{1}{4}[2 x-\sin 2 x]+C \\
& \text { or } \\
& \frac{1}{2} x-\frac{1}{4} \sin 2 x+C
\end{aligned}
$$

10. $\lim _{h \rightarrow 0} \frac{\cos \left(\frac{\pi}{2}+h\right)-\cos \left(\frac{\pi}{2}\right)}{h}=f^{\prime}\left(\frac{\pi}{2}\right)$, for $f(x)=\cos y$
or 0 O, by L'Hobpital's Rulp

$$
\lim _{h \rightarrow 0} \frac{-\sin \left(\frac{\pi}{2}+h\right)-0}{1}
$$

$$
-\sin \left(\frac{\pi}{2}\right)
$$

$$
-1
$$

$$
\text { So, } \begin{aligned}
f^{\prime}(x) & =-\sin y \\
f^{\prime}\left(\frac{\pi}{2}\right) & =-\sin \frac{\pi}{2} \\
& =-1
\end{aligned}
$$

11. The coefficient of $x^{3}$ in the Taylor series for $e^{2 x}$ about $x=0$ is?

$$
\begin{aligned}
e^{x} & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \\
e^{2 x} & =1+(2 x)+\frac{(2 x)^{2}}{2!}+\frac{(2 x)^{3}}{3!}+\cdots \\
& =1+2 x+\frac{4 x^{2}}{2!}+\frac{8 x^{3}}{3!}+\cdots \\
& \text { So, coefficient of } x^{3} \text { is } \frac{8}{3!}=\frac{8}{3 \cdot 2 \cdot 1}=\frac{4}{3}
\end{aligned}
$$

12. What are all values of $x$ for which the series $\sum_{n=1}^{\infty} \frac{(x-2)^{n}}{n 3^{n}}$ converge?

Ratio Test

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left|\frac{(x-2)^{n+1}}{(n+1) 3^{n+1}} \cdot \frac{n \cdot 3^{n}}{(x-2)^{n}}\right| \\
& \lim _{n \rightarrow \infty}\left|\frac{(x-2)^{n} \cdot(x-2)^{\prime} \cdot n \cdot 3^{n}}{(n+1) 3^{n} \cdot 3(x-2)^{n}}\right| \\
& \lim _{n \rightarrow \infty}\left|\frac{(x-2) n^{\prime}}{3\left(n^{\prime}+1\right)}\right| \\
& \left|\frac{x-2}{3}\right|<1 \\
& |x-4<R \quad| x-2 \mid<3 \\
& \text { So } \left\lvert\, \begin{array}{l}
\text { a dins } R=3 \\
-3 \mid+3 \quad 1 \\
\quad \mid \\
-1 \\
\text { center }
\end{array}\right.
\end{aligned}
$$

Test endpoints

$$
\begin{aligned}
x=-1: & \sum \frac{(-3)^{n}}{n \cdot 3^{n}} \\
& \sum \frac{(-1)^{n} \cdot 3^{n}}{n 3^{n}} \\
& \sum \frac{(-1)^{n}}{n}
\end{aligned}
$$

Convergent (Conditionally) Harmonic $p$-series

$$
\begin{array}{ll}
x=5: & \sum \frac{3^{n}}{n \cdot 3^{n}} \\
\sum \frac{1}{n}
\end{array}
$$

Divergent harmonic $p$-series
So, Interval of Con vergence

$$
\text { is }[-1,5)
$$

13. Which of the following converge?

$$
\text { . } \sum_{n=1}^{\infty} \frac{n}{n+2}
$$

II. $\sum_{n=1}^{\infty} \frac{\cos (n \pi)}{n}$

HI. $\sum_{n=1}^{\infty} \frac{1}{n}$
(A) None
(B) II only
(C) III only
(D) I and II only
(E) I and III only

$$
\begin{aligned}
& \text { I. } \lim _{n \rightarrow \infty} \frac{n}{n+2}=1 \neq 0 \\
& \text { Diverges by } n^{\text {th }} \text { term test }
\end{aligned}
$$

I. $\cos (n \pi)=(-1)^{n}$
Cond, convergent harmonic series
III.
14. The Taylor series about $x=5$ for a certain function $f$ converges to $f(x)$ for all $x$ in its interval of convergence. The $n$th derivative of $f$ at $x=5$ is given by

$$
f^{(n)}(5)=\frac{(-1)^{n} n!}{2^{n}(n+2)} \text { and } f(5)=\frac{1}{2}
$$

Show that the sixth-degree Taylor polynomial for $f$ about $x=5$ approximates $f(6)$ with an error less than $\frac{1}{1000}$.

$$
\begin{aligned}
& \text { This is an alternating series }
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\left|\frac{7!}{2^{7}(7+2) 7!} \cdot\right|^{7} \right\rvert\, \\
& =\frac{1}{9 \cdot 2^{7}} \\
& =\frac{1}{1152}<\frac{1}{1000}
\end{aligned}
$$

15. The population $P(t)$ of unicorns in a forest satisfies the logistic differential equation $\frac{d P}{d t}=3 P-\frac{P^{2}}{6000}$.
(a) If $P(0)=4000$, what is $\lim _{t \rightarrow \infty} P(t)$ ? Is the solution curve increasing or decreasing? Justify your answer.
(b) If $P(0)=10,000$, what is $\lim _{t \rightarrow \infty} P(t)$ ? Is the solution curve increasing or decreasing? Justify your answer.
(c) If $P(0)=20,000$, what is $\lim _{t \rightarrow \infty} P(t)$ ? Is the solution curve increasing or decreasing? Justify your answer.
(d) If $P(0)=4000$, what is the population when it is growing the fastest? Where is the solution curve concave up? Concave down? Justify your answer.


$$
\begin{aligned}
& \text { (a) } \lim _{t \rightarrow \infty} P(t)=18000 \text {, Increasing } \\
& \text { since } P(0)=4000<19000
\end{aligned}
$$

$$
\frac{d P}{d t}=\frac{1}{6000} P(18,000-P)
$$

$$
80, K=\frac{1}{6000}, L=18,000
$$



$$
\text { since } P(0)=10000<18000
$$

$$
\begin{aligned}
& t \rightarrow \infty \\
& \text { since } P(0)=20000>18000
\end{aligned}
$$

(d) $P(t)=9000$ when population grows fastest. At this time,

$$
\frac{d P}{d t}=\frac{9000}{6000}(18000-9000)=\frac{3}{2}(9000)=13500 \text { unicorn } / \text { time }
$$

Solution curves are
concave up for $0<P(t)<9000$,
\& $18000<P(t)<27000$
So, for $P(0)=4000, P(t)$ is
concave down for $9000<f(t)<18000$
16. (Calculator Permitted) Given $\frac{d x}{d t}=\cos \left(t^{3}\right)$ and $\frac{d y}{d t}=3 \sin \left(t^{2}\right)$ for $0 \leq t \leq 3$. At time $t=2$, the object at position $\begin{gathered}x y \\ (4,5) .\end{gathered}$ $x(t)=d t \quad y(t)=d t$
(a) Find the speed of the object at time $t=2$.
(b) Find the total distance traveled by the object over the time interval $0 \leq t \leq 1$.
(c) Find the position of the object at time $t=3$.

$$
\begin{aligned}
\text { (a) Speed } & =\sqrt{\left[x^{\prime}(2)\right]^{2}+\left[y^{\prime}(2)\right]^{2}} \\
& =2.275
\end{aligned}
$$

$$
\text { (b) } \begin{aligned}
\text { Distance }=\mathcal{L} & =\int_{0}^{1} \sqrt{\left[x^{\prime}(t)\right]^{2}+\left[y^{\prime}(t)\right]^{2}} d t \\
& =1.450
\end{aligned}
$$

$$
\begin{aligned}
(c) \vec{S}(3) & =\langle x(3), y(3)\rangle \\
& =\left\langle 4+\int_{2}^{3} x^{\prime}(t) d t, 5+\int_{2}^{3} y^{\prime}(t) d t\right\rangle \\
& =\langle 3.953,4.906\rangle
\end{aligned}
$$

17. (Calculator Permitted) Given $f(x)=\frac{1}{3}+\frac{2 x}{9}+\frac{3 x^{2}}{27}+\cdots+\frac{(n+1)}{3^{n+1}} x^{n}+\cdots$
(a) $\lim _{x \rightarrow 0} \frac{f(x)-\frac{1}{3}}{x}$.

$$
f^{\prime}(x)=\frac{2}{9}+\frac{6}{27} x+\cdots+\frac{n(n+1)}{3^{n+1}} x^{n-1}+\cdots
$$

(b) Write the first three nonzero terms and the general term for the infinite series that represents $\int_{0}^{1} f(x) d x$.
(c) Find the sum of the series found in part (b).
(a) $\sum_{x \rightarrow 0} \frac{f(x)-\frac{1}{3}}{x} \%$
$L^{\prime} h_{\text {op }}: \lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{1}=\frac{2}{9}$
(b) $\int_{0}^{1} f(x) d x=\frac{1}{3} x+\frac{1}{9} x^{2}+\frac{1}{27} x^{3}+\cdots+\frac{1}{3^{n+1}} x^{n+1}+\left.\cdots\right|_{0} ^{1}$
(c)

$$
\begin{aligned}
& =\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\cdots+\frac{1}{3^{n+1}}+\cdots\right)-(0) \\
& =\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\cdots \frac{1}{3^{n+1}} \\
& =\sum_{n=0}^{\infty} \frac{1}{3^{n+1}} \\
& =\sum_{n=0}^{\infty} \frac{1}{3} \cdot\left(\frac{1}{3}\right)^{n} \quad(\text { Geanetric Series }) \\
& =\frac{1 / 3}{1}-\frac{1}{3}\left|=\left|\frac{1}{3}\right|=\frac{1}{3}<1\right. \\
& =\frac{1}{3} \\
& =\frac{1}{3} \cdot \frac{2}{3}=\frac{1}{2}
\end{aligned}
$$

18. (Calculator Permitted) The function $f$ has derivatives of all orders for all real numbers $x$. Assume that $f(2)=5, f^{\prime}(2)=-3, f^{\prime \prime}(2)=4, f^{\prime \prime \prime}(2)=-1$, and $\left|f^{(4)}(x)\right| \leq 3$ for all $x$ in $[2,2.2]$.
(a) Write the third-degree Taylor polynomial for $f$ about $x=2$.
(b) Use your answer to (a) to approximate $f(2.15)$. Give your answer correct to five decimal places.
(c) Use the Lagrange error bound on the approximation of $f(2.15)$ to explain why $f(2.15) \neq 4.7$.
(a) $f(x) \approx T_{3}(x)=5-3(x-2)+\frac{4}{2!}(x-2)^{2}-\frac{1}{3!}(x-2)^{3}$
(b) $f(2.15) \approx T_{3}(2.15)=4.59443=A($ store $)$
(C)

$$
\begin{aligned}
\left|f(2.15)-T_{3}(2.15)\right| & =\left|\frac{f^{(4)}(z)}{4!}(2.15-2)^{4}\right| \\
& \leqslant\left|\frac{3}{24}(.15)^{4}\right|=0.00006328125=\frac{15}{160}=\frac{3}{20}
\end{aligned}
$$

So $f(2.15) \in\left[T_{3}(2.15)-B, T_{3}(2.15)+B\right]$

$$
f(2.15) \in[A-B, A+B]=[4.594374219,4.59450078)]
$$

So, $f(2.15) \neq 4.7$ since 4.7 is outside the above interval.

