Taylor Series & Polynomials MC Review

Select the correct capital letter. NO CALCULATOR unless specified otherwise.

- _____1. Let $T_5(x) = 3x^2 5x^3 + 7x^4 + 3x^5$ be the fifth-degree Taylor polynomial for the function f about x = 0. What is the value of f'''(0)?

- (A) -30 (B) -15 (C) -5 (D) $-\frac{5}{6}$ (E) $-\frac{1}{6}$

- ____ 2. For what integer k, k > 1, will both $\sum_{n=1}^{\infty} \frac{\left(-1\right)^{kn}}{n}$ and $\sum_{n=1}^{\infty} \left(\frac{k}{4}\right)^n$ converge?
 - (A) 6 (B) 5
- (C) 4
- (D)3
- (E) 2

- 3. (<u>Calculator Permitted</u>) The Taylor series for $\ln x$, centered at x = 1, is $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{(x-1)^n}{n}$. Let fbe the function given by the sum of the first three nonzero terms of this series. The maximum value of $|\ln x - f(x)|$ for $0.3 \le x \le 1.7$ is which of the following?
 - (A) 0.030
- (B) 0.039
- (C) 0.145
- (D) 0.153
- (E) 0.529

- 4. What are the values of x for which the series $\sum_{n=1}^{\infty} \frac{(x+2)^n}{\sqrt{n}}$ converges?
- (A) -3 < x < -1 (B) $-3 \le x < -1$ (C) $-3 \le x \le -1$ (D) $-1 \le x < 1$ (E) $-1 \le x \le 1$

_____ 5. (<u>Calculator Permitted</u>) The graph of the function represented by the Maclaurin series

$$1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots + \frac{\left(-1\right)^n x^n}{n!} + \dots \text{ intersects the graph of } y = x^3 \text{ at } x = \frac{1}{n!}$$

- (A) 0.773
- (B) 0.865
- (C) 0.929
- (D) 1.000
- (E) 1.857

- 6. Which of the following sequences converge?
 - I. $\left\{\frac{5n}{2n-1}\right\}$ II. $\left\{\frac{e^n}{n}\right\}$
- III. $\left\{ \frac{e^n}{1+e^n} \right\}$

- (A) I only
- (B) II only
- (C) I and II only
- (D) I and III only
- (E) I, II, and III

- _____ 7. What is the approximation of the value of sin1 obtained by using the fifth-degree Taylor polynomial about x = 0 for $\sin x$?

- (A) $1 \frac{1}{2} + \frac{1}{24}$ (B) $1 \frac{1}{2} + \frac{1}{4}$ (C) $1 \frac{1}{3} + \frac{1}{5}$ (D) $1 \frac{1}{4} + \frac{1}{8}$ (E) $1 \frac{1}{6} + \frac{1}{120}$

8. Which of the following series converge?

$$I. \sum_{n=1}^{\infty} \frac{n}{n+2}$$

I.
$$\sum_{n=1}^{\infty} \frac{n}{n+2}$$
 II. $\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n}$ III. $\sum_{n=1}^{\infty} \frac{1}{n}$

III.
$$\sum_{n=1}^{\infty} \frac{1}{n}$$

- (A) None
- (B) II only
- (C) III only (D) I and II only
- (E) I and III only

- 9. If $\lim_{b\to\infty} \int_{1}^{b} \frac{dx}{x^p}$ is finite, then which of the following must be true?
- (A) $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges (B) $\sum_{n=1}^{\infty} \frac{1}{n^p}$ diverges (C) $\sum_{n=1}^{\infty} \frac{1}{n^{p-2}}$ converges
 - (D) $\sum_{n=1}^{\infty} \frac{1}{n^{p-1}}$ converges (E) $\sum_{n=1}^{\infty} \frac{1}{n^{p+1}}$ diverges

_____ 10. If $\sum_{n=0}^{\infty} a_n x^n$ is a Taylor series that converges to f(x) for all real x, then f'(1) =

- (A) 0 (B) a_1 (C) $\sum_{n=0}^{\infty} a_n$ (D) $\sum_{n=1}^{\infty} na_n$ (E) $\sum_{n=1}^{\infty} na_n^{n-1}$

_____11. What is the value of $\sum_{n=1}^{\infty} \frac{2^{n+1}}{3^n}$?

- (A) 1 (B) 2 (C) 4 (D) 6 (E) The series diverges

_____12. The Maclaurin series for $\frac{1}{1-x}$ is $\sum_{n=0}^{\infty} x^n$. Which of the following is a power series expansion for $\frac{x^2}{1-x^2}$?

(A)
$$1+x^2+x^4+x^6+x^8+\cdots$$
 (B) $x^2+x^3+x^4+x^5+\cdots$ (C) $x^2+2x^3+3x^4+4x^5+\cdots$ (D) $x^2+x^4+x^6+x^8+\cdots$ (E) $x^2-x^4+x^6-x^8+\cdots$

_____13. A function f has a Maclaurin series given by $\frac{x^4}{2!} + \frac{x^5}{3!} + \frac{x^6}{4!} + \dots + \frac{x^{n+3}}{(n+1)!} + \dots$. Which of the following is an expression for f(x)?

(A)
$$-3x\sin x + 3x^2$$
 (B) $-\cos(x^2) + 1$ (C) $-x^2\cos x + x^2$
(D) $x^2e^x - x^3 - x^2$ (E) $e^{x^2} - x^2 - 1$

_____ 14. Which of the following series diverge?

I.
$$\sum_{n=0}^{\infty} \left(\frac{\sin 2}{\pi} \right)^n$$

II.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$$

I.
$$\sum_{n=0}^{\infty} \left(\frac{\sin 2}{\pi}\right)^n \qquad \text{II. } \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}} \qquad \text{III. } \sum_{n=1}^{\infty} \left(\frac{e^n}{e^n + 1}\right)$$

(A) III only (B) I and II only (C) I and III only (D) II and III only (E) I, II, and III

____ 15. What is the coefficient of x^2 in the Taylor series for $\frac{1}{(1+x)^2}$ about x=0?

(A)
$$\frac{1}{6}$$

(A)
$$\frac{1}{6}$$
 (B) $\frac{1}{3}$ (C) 1 (D) 3 (E) 6

- _____ 16. The sum of the infinite geometric series $\frac{3}{2} + \frac{9}{16} + \frac{27}{128} + \frac{81}{1024} + \cdots$ is
 - (A) 1.60
- (B) 2.35
- (C) 2.40
- (D) 2.45
- (E) 2.50

- _____17. What are all values of x for which the series $\sum_{n=1}^{\infty} \frac{(x-2)^n}{n3^n}$ converges?

- (A) $-3 \le x \le 3$ (B) -3 < x < 3 (C) $-1 < x \le 3$ (D) $-1 \le x \le 5$ (E) $-1 \le x < 5$

- _____18. The Taylor series for $\sin x$ about x = 0 is $x \frac{x^3}{3!} + \frac{x^5}{5!} \cdots$. If f is a function such that $f'(x) = \sin(x^2)$, then the coefficient of x^7 in the Taylor series for f(x) about x = 0 os

- (A) $\frac{1}{7!}$ (B) $\frac{1}{7}$ (C) 0 (D) $-\frac{1}{42}$ (E) $-\frac{1}{7!}$

_____19. $\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n!}$ is the Taylor series about zero for which of the following functions?

- (A) $\sin x$

- (B) $\cos x$ (C) e^x (D) e^{-x} (E) $\ln(1+x)$

20. For what values of x does the series $1+2^x+3^x+4^x+\cdots+n^x+\cdots$ converge?

- (A) No values of x (B) x < -1 (C) $x \ge -1$ (D) x > -1 (E) All values of x

21. The complete interval of convergence of the series $\sum_{k=1}^{\infty} \frac{(x+1)^k}{k^2}$ is

- (A) 0 < x < 2 (B) $0 \le x \le 2$ (C) $-2 < x \le 0$ (D) $-2 \le x < 0$ (E) $-2 \le x \le 0$

_____21. For
$$-1 < x < 1$$
, if $f(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{2n-1}}{2n-1}$, then $f'(x) =$

(A)
$$\sum_{n=1}^{\infty} (-1)^{n+1} x^{2n-2}$$
 (B) $\sum_{n=1}^{\infty} (-1)^n x^{2n-2}$ (C) $\sum_{n=1}^{\infty} (-1)^{2n} x^{2n}$ (D) $\sum_{n=1}^{\infty} (-1)^n x^{2n}$ (E) $\sum_{n=1}^{\infty} (-1)^{n+1} x^{2n}$

22. The coefficient of x^3 in the Taylor series fo e^{3x} about x = 0 is

- (A) $\frac{1}{6}$ (B) $\frac{1}{3}$ (C) $\frac{1}{2}$ (D) $\frac{3}{2}$ (E) $\frac{9}{2}$

$$23. \sum_{i=n}^{\infty} \left(\frac{1}{3}\right)^i =$$

- (A) $\frac{3}{2} \left(\frac{1}{3}\right)^n$ (B) $\frac{3}{2} \left| 1 \left(\frac{1}{3}\right)^n \right|$ (B) $\frac{3}{2} \left(\frac{1}{3}\right)^n$ (D) $\frac{2}{3} \left(\frac{1}{3}\right)^n$ (E) $\frac{2}{3} \left(\frac{1}{3}\right)^{n+1}$

24. Which of the followign series converge?

I.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{2n+1}$$
 II. $\sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{3}{2}\right)^n$ III. $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$

II.
$$\sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{3}{2}\right)^n$$

III.
$$\sum_{n=2}^{\infty} \frac{1}{n \ln n}$$

- (A) I only
 - (B) II only
- (C) III only
- (D) I and III only
- (E) I, II, and III

_____25. If $s_n = \left(\frac{\left(5+n\right)^{100}}{5^{n+1}}\right)\left(\frac{5^n}{\left(4+n\right)^{100}}\right)$, to what number does the sequence $\{s_n\}$ converge?

- (A) $\frac{1}{5}$ (B) 1 (C) $\frac{5}{4}$ (D) $\left(\frac{5}{4}\right)^{100}$ (E) The sequence does not converge

_____ 26. (<u>Calculator Permitted</u>) If $f(x) = \sum_{k=1}^{\infty} (\sin^2 x)^k$, then f(1) is

- (A) 0.369
- (B) 0.585
- (C) 2.400
- (D) 2.426
- (E) 3.426

_____ 27. Let the function given by $f(x) = \ln(3-x)$. The third-degree Taylor polynomial for f about x = 2 is

(A)
$$-(x-2) + \frac{(x-2)^2}{2} - \frac{(x-2)^3}{3}$$
 (B) $-(x-2) - \frac{(x-2)^2}{2} - \frac{(x-2)^3}{3}$ (C) $(x-2) + (x-2)^2 + (x-2)^3$
(D) $(x-2) + \frac{(x-2)^2}{2} + \frac{(x-2)^3}{3}$ (E) $(x-2) - \frac{(x-2)^2}{2} + \frac{(x-2)^3}{3}$

- 28. (<u>Calculator Permitted</u>) Suppose a function f is approximated with a fourth-degree Taylor polynomial about x = 1. If the maximum value of the fifth derivative between x = 1 and x = 3 is 0.01, that is, $\left| f^{(5)}(x) \right| < 0.01$, then the maximum error incurred using this approximation to compute f(3) is
 - (A) 0.054
- (B) 0.0054
- (C) 0.26667
- (D) 0.02667
- (E) 0.00267