6. C 7. E 8. C 9. D 10. D

C
 E
 D
 D
 B

1. The graph of f is shown in the figure on the right. If

 $g(x) = \int_{0}^{x} f(t)dt$, for what value of x does g(x) have a maximum?

- (A) *a*
- (B) *b*
- (C) c
- (D) *d*
- (E) It cannot be determined from the information given

2. In the triangle shown on the right, if θ increases at a constant rate of 3 radians per minute, at what rate is x increasing, in units per minute, when x = 3 units?

The graph of y = f(x) is shown in the figure above. If A_1 and A_2 are positive numbers that represent the

areas of the shaded regions, then in terms of A_1 and A_2 , $\int_{-4}^{4} f(x) dx - 2 \int_{-1}^{4} f(x) dx =$ (A) A_1 (B) $A_1 - A_2$ (C) $2A_1 - A_2$ (D) $A_1 + A_2$ (E) $A_1 + 2A_2$

t.3. [2 sin(=) cos(=)

 $\frac{\frac{3\sin(\frac{1}{4})}{1}}{\frac{3\cos(\frac{1}{4})+4\frac{1}{4}}{1}}$ 5. $\int_{1}^{4} \frac{dx}{\sqrt{16-x^{2}}} = \frac{12}{12}$

- (A) $\arcsin\left(\frac{1}{4}\right) + \frac{\pi}{2}$ (B) $-\arcsin\left(\frac{1}{4}\right) + \frac{\pi}{2}$ (C) $\arcsin\left(\frac{1}{4}\right) \frac{\pi}{2}$
- - (D) $-4\arcsin\left(\frac{1}{4}\right) + \frac{\pi}{2}$ (E) $4\arcsin\left(\frac{1}{4}\right) \frac{\pi}{2}$

- 7. The position of a particle moving along the x-axis at time t is given by $x(t) = \sin^2(4\pi t)$. At which of the following values of t will the particle change direction?
 - I.
 - II.
 - III. t = 1
 - IV. t = 2
 - (A) II, III, and IV (B) I and II (C) I, II, and III (D) III and IV (E) I, III, and IV

- 8. Determine $\frac{dy}{dt}$ given that $y = -3x^2 + 4x$ and $x = \cos t$.
 - (A) $6\cos t 4$
- (B) $-2\cos t\sin t$

- (C) $-(-6\cos t + 4)\sin t$ (D) $2\sin t$ (E) $-(-6\cos t + 4)\cos t$

- 9. The function $f(x) = 2x^2 + 4e^{5x}$ has an inverse function $f^{-1}(x)$. Find the slope of the <u>normal</u> line to the graph of $f^{-1}(x)$ at x = f(0). (A) $16+20e^{20}$ (B) $\frac{1}{20}$ (C) $-\frac{1}{16+20e^{20}}$ (D) -20 (E) $-\frac{5}{4}$

- 10. A circle centered at (0,-3) with a radius of 3 has a polar equation
 - (A) $r = -6\sin\theta \cos\theta$
- (B) $r = -3\sin\theta 3\cos\theta$ (C) $r = -3\csc\theta$ (D) $r = -6\sin\theta$
- (E) $r = -6\cos\theta$

- 11. (2004, AB-6) Consider the differential equation given by $\frac{dy}{dx} = x^2(y-1)$. y = 1
 - (a) On the axes provided above, sketch a slope field for the given differential equation at the 12 points indicated.
 - (b) While the slope field in part (a) is drawn at only twelve points, it is defined at every point in the *xy*-plane. Describe all points in the *xy*-plane for which the slopes are positive.

(c) Find the particular solution y = f(x) to the given differential equation with the initial condition

Find the particular solution
$$y = f(x)$$
 to the given differential $f(0) = 3$.

$$\frac{dy}{dx} = x^2 \frac{dy}{dx}$$

$$\frac{dy}{dx} = x^2 \frac{dy}{dx}$$

$$\frac{dy}{dx} = x^2 \frac{dx}{dx}$$

$$\frac{dy}{dx} = x^$$

AP® CALCULUS AB 2004 SCORING GUIDELINES

Question 6

Consider the differential equation $\frac{dy}{dx} = x^2(y-1)$.

- (a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated. (Note: Use the axes provided in the pink test booklet.)
- (b) While the slope field in part (a) is drawn at only twelve points, it is defined at every point in the xy-plane. Describe all points in the xy-plane for which the slopes are positive.
- (c) Find the particular solution y = f(x) to the given differential equation with the initial condition f(0) = 3.

(a)

1 : zero slope at each point (x, y)where x = 0 or y = 1

positive slope at each point (x, y)where $x \neq 0$ and y > 1negative slope at each point (x, y)where $x \neq 0$ and v < 1

- (b) Slopes are positive at points (x, y)where $x \neq 0$ and y > 1.
 - 1: description

(c)
$$\frac{1}{y-1}dy = x^2 dx$$

$$\ln|y-1| = \frac{1}{3}x^3 + C$$

$$|y-1| = e^C e^{\frac{1}{3}x^3}$$

$$y-1 = Ke^{\frac{1}{3}x^3}, K = \pm e^C$$

$$2 = Ke^0 = K$$

$$y = 1 + 2e^{\frac{1}{3}x^3}$$

1 : separates variables 2 : antiderivatives 1 : constant of integration1 : uses initial condition 0/1 if y is not exponential

Note: max 3/6 [1-2-0-0] if no constant of integration Note: 0/6 if no separation of variables

- 12. (1999, AB-4) Suppose that the function f has a continuous second derivative for all x, and that f(0) = 2,
 - f'(0) = -3, and f''(0) = 0 Let g be a function whose derivative is given by
 - $g'(x) = e^{-2x} (3f(x) + 2f'(x))$ for all x.
 - (a) Write an equation of the tangent line to the graph of f at the point where x = 0.

$$9(6) = 3f(6) + 2f(6)$$

= $3(2) + 2(-3)$
= $6 - 6$
= 0

$$f(0) = 2 f'(0) = -3$$
eq. $f(0) = -3(x-0)$

(b) Is there sufficient information to determine whether or not the graph of f has a point of inflection when x = 0? Explain your answer.

No, there is not sufficient information because, of though f'(0)=0, we have no information about f'w on either side of x=0 to defarming whether f changes rights at x=0.

(c) Given that g(0) = 4, write an equation of the line tangent to the graph of g at the point where x = 0

(d) Show that $g''(x) = e^{-2x} \left(-6f(x) - f'(x) + 2f''(x)\right)$. Does g have a local maximum at x = 0? Justify your answer.

$$g'(x) = e^{-2x}(3f(x) + 2f(x))$$

$$= e^{-2x}(3f(x) + 2f(x)) + e^{-2x}(3f(x) + 2f(x))$$

$$= e^{-2x}(-6f(x) - 4f(x)) + 3f(x) + 2f'(x)$$

$$= e^{-2x}(-6f(x) - 4f(x)) + 3f(x) + 2f'(x)$$

$$= e^{-2x}(-6f(x) - 4f(x)) + 2f'(x)$$

$$= e^{-2x}(-6f(x)) + 2f'(x)$$

$$= e^{$$

- 4. Suppose that the function f has a continuous second derivative for all x, and that f(0) = 2, f'(0) = -3, and f''(0) = 0. Let g be a function whose derivative is given by $g'(x) = e^{-2x}(3f(x) + 2f'(x))$ for all x.
 - (a) Write an equation of the line tangent to the graph of f at the point where x = 0.
 - (b) Is there sufficient information to determine whether or not the graph of f has a point of inflection when x = 0? Explain your answer.
 - (c) Given that g(0) = 4, write an equation of the line tangent to the graph of g at the point where x = 0.
 - (d) Show that $g''(x) = e^{-2x}(-6f(x) f'(x) + 2f''(x))$. Does g have a local maximum at x = 0? Justify your answer.
- (a) Slope at x = 0 is f'(0) = -3

At
$$x = 0$$
, $y = 2$
 $y - 2 = -3(x - 0)$

1: equation

- (b) No. Whether f''(x) changes sign at x = 0 is unknown. The only given value of f''(x) is f''(0) = 0.
- $\mathbf{2} \begin{cases} 1: \text{ answer} \\ 1: \text{ explanation} \end{cases}$

(c) $g'(x) = e^{-2x}(3f(x) + 2f'(x))$ $g'(0) = e^{0}(3f(0) + 2f'(0))$ = 3(2) + 2(-3) = 0

$$y - 4 = 0(x - 0)$$
$$y = 4$$

 $\mathbf{2} \begin{cases} 1: g'(0) \\ 1: \text{ equation} \end{cases}$

(d) $g'(x) = e^{-2x}(3f(x) + 2f'(x))$

$$g''(x) = (-2e^{-2x})(3f(x) + 2f'(x))$$
$$+ e^{-2x}(3f'(x) + 2f''(x))$$
$$= e^{-2x}(-6f(x) - f'(x) + 2f''(x))$$

$$g''(0) = e^{0}[(-6)(2) - (-3) + 2(0)] = -9$$

Since g'(0) = 0 and g''(0) < 0, g does have a local maximum at x = 0.

2: verify derivative 0/2 product or chain rule error <-1> algebra errors1: a'(0) = 0 and a''(0)

1: answer and reasoning