

1. C
2. C
3. D
4. C
5. C
6. B
7. E
8. E
9. A

BC Review 05, Use your calculator ONLY on \#2.
Do all work on separate notebook paper

1. If $\frac{d y}{d x}=y \sec ^{2} x$ and $y=5$ when $x=0$, then $y=$
(A) $e^{\tan x}+4$
(B) $e^{\tan x}+5$
(C) $5 e^{\tan x}$
(D) $\tan x+5$
(E) $\tan x+5 e^{x}$
2. (Calculator Permitted) The average value of the function $f(x)=e^{-x^{2}}$ on the closed interval $[-1,1]$ is
(A) 0.70
(B) 0.75
(C) 0.80
(D) 0.85
(E) 0.90
3. If $\frac{d y}{d x}=\frac{1}{x}$, then the average rate of change of y with respect to x on the closed interval $[1,4]$ is
(A) $-\frac{1}{4}$
(B) $\frac{1}{2} \ln 2$
(C) $\frac{2}{3} \ln 2$
(D) $\frac{2}{5}$
(E) 2
4. Given the differential equation $\frac{d y}{d x}=\frac{1}{x+1}$ and $y(0)=0$. An approximation of $y(1)$ using Euler's method with two steps and step size $\Delta x=0.5$ is
(A) $\frac{1}{3}$
(B) $\frac{1}{2}$
(C) $\frac{2}{3}$
(D) $\frac{5}{6}$
(E) $\frac{9}{10}$
5. If a population of wolves grows according to the differential equation $\frac{d N}{d t}=0.05 N-0.0005 N^{2}$, where N is the number of wolves and t is measured in years, then $\lim _{t \rightarrow \infty} N(t)=$
(A) 50
(B) 75
(C) 100
(D) 150
(E) 200
6. $\lim _{h \rightarrow 0} \frac{3\left(\frac{1}{2}-h\right)^{5}-3\left(\frac{1}{2}\right)^{5}}{h}=$
(B) 1
(C) $\frac{15}{16}$
(D) the limit does not exist
(E) the limit cannot be determined
7. If f is continuous for $a \leq x \leq b$ and differentiable for $a<x<b$, which of the following could be false?

M VT A$) f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$ for some c such that $a<c<b$.
(B) $f^{\prime}(c)=0$ for some c such that $a<c<b$.
(C) f has a minimum value on $a \leq x \leq b$. E VT
(D) f has a maximum value on $a \leq x \leq b . E \cup T$
(E) $\int_{a}^{b} f(x) d x$ exists

8. $\int_{1}^{e}\left(\frac{x^{2}-1}{x}\right) d x=$
$\int_{1}^{e}\left(\frac{x^{2}}{x}-\frac{1}{x}\right)$
$\begin{array}{ll}\text { (A) } e-\frac{1}{e} & \text { (B) } e^{2}-e\end{array}$
(C) $\frac{e^{2}}{2}-e+\frac{1}{2}$
(D) $e^{2}-2$
(E) $\frac{e^{2}}{2}-\frac{3}{2}$
$\int_{1}^{e}\left(x-\frac{1}{x}\right)$ $d x=\frac{1}{2} x^{2}-\left.\ln x\right|_{1} ^{e}$
9. $\int_{0}^{\pi} x \cos x d x=\begin{gathered}\left(\frac{e^{2}}{2}-1\right)-\left(\frac{1}{2}\right) \\ \frac{e^{2}}{2}-\frac{3}{2}\end{gathered}$
(A) $\frac{\pi}{3}-\frac{4}{3}$
(B) π
(C) $\frac{\pi}{2}-1$
(D) $\frac{\pi}{4}-\frac{3}{2}$
(E) -2
10. Determine the y-intercept of the tangent line to the curve $\left.y=\sqrt[\downarrow]{x^{2}+24}\right)^{1 / 2}$ at $x=5$.
pt. $(5,7)$
(A) $\frac{24}{7}$
(B) $-\frac{72}{49}$
(C) $\frac{48}{49}$
(D) $\frac{44}{7-y_{2}}$
(E) $\frac{88}{49}$
11. (2002-AB5) A container has the shape of an open right circular cone, as shown in the figure on the right. The height of the container is 10 cm , and the diameter of the opening is 10 cm . Water in the container is evaporating so that its depth h is changing at the constant rate of $-\frac{3}{10}$ $\mathrm{cm} / \mathrm{hr}$.

$$
\frac{d h}{d t}=-\frac{3}{10}
$$

(a) Find the volume V of water in the container when $h=5 \mathrm{~cm}$. Indicate units of measure.
(b) Find the rate of change of the volume of water in the container, with respect to time, when $h=5 \mathrm{~cm}$. Indicate units of measure.
(c) Show that the rate of change of the volume of water in the container due to evaporation is directly proportional to the exposed surface

x	-1.5	-1.0	-0.5	0	0.5	1.0	1.5								
$f(x)$	-1	-4	-6	-7	-6	-4	-1								
$f^{\prime}(x)$	-7	-5	-3	0	3	5	7								

12. (2002-AB6) Le f be a function that is differentiable for all real numbers. The table above gives the values of f and its derivative f^{\prime} for selected points x in the closed interval $-1.5 \leq x \leq 1.5$. The second derivative of f has the property that $f^{\prime \prime}(x)>0$ for $-1.5 \leq x \leq 1.5$.
(a) Evaluate $\int_{0}^{1.5} \frac{\left(3 f^{\prime}(x)+4\right) d x \text {. } f \text { is cc up } f^{\prime} \text { is inc }}{3 \cdot f(x)+4 \times l_{0}^{1.5}=(3 f(1.5)+6)-(3 \cdot f(0))=3(-1)+6-3(-7)=24}$
(b) Write an equation of the line tangent to the graph of f at the point where $x=1$. Use this line to approximate the value of $f(1.2)$. Is this approximation greater than or less than the actual value of $f(1.2)$? Give a reason for your answer. $\begin{array}{ll}f(1)=-4 & T(x)=-4+5(x-1) \\ f^{\prime}(1)=5 & f(1.2) \approx(1.2)=-4+5\end{array}$
(c) Find a positive real number r having the property that there must exist a value c with $0<c<0.5$ and $\underbrace{f^{\prime \prime}(x)}=r$. Give a reason for your answer.
(d) Let g be the function given by $g(x)=\left\{\begin{array}{l}2 x^{2}-x-7 \text { for } x<0 \\ 2 x^{2}+x-7 \text { for } x \geq 0\end{array}\right.$. The graph of g passes through each of the points $(x, f(x))$ given in the table above. Is it possible that f and g are the same function? Give a reason for your answer.

$$
\begin{aligned}
& g^{\prime}(x)=\left\{\begin{array}{l}
4 x-1, x<0 \\
4 x+1, x \geq 0
\end{array}\right. \\
& \ell_{x \rightarrow 0^{-}}-g^{\prime}(x)=-1 \\
& e_{x \rightarrow 0}+g^{\prime}(x)=1 \\
& \text { Since }-1 \neq 1, g(x) \text { is not diffable } \\
& \text { of } x=0 \text { while fix) is, ergo, } \\
& \text { they ire. not the same function }
\end{aligned}
$$

