I. B 6. D
2. A 7. B
3. D
8. B
9. A
5. A

IO. D

1.

At time $t \geq 0$, a particle moving in the $x y$-plane has velocity vector given by $v(t)=\left\langle t^{2}, 5 t\right\rangle$. What is the acceleration vector of the particle at time $t=3$?
(A) $\left\langle 9, \frac{45}{2}\right\rangle$
(B) $\langle 6,5\rangle$
(C) $\langle 2,0\rangle$
(D) $\sqrt{306}$
(E) $\sqrt{61}$
2.

(A) $\frac{1}{2} e^{x^{2}}+C$
(B) $e^{x^{2}}+C$
(C) $x e^{x^{2}}+C$
(D) $\frac{1}{2} e^{2 x}+C$
(E) $e^{2 x}+C$
3.

Consider the series $\sum_{n=1}^{\infty} \frac{e^{n}}{n!}$. If the ratio test is applied to the series, which of the following inequalities results, implying that the series converges?
(A) $\lim _{n \rightarrow \infty} \frac{e}{n!}<1$
(B) $\lim _{n \rightarrow \infty} \frac{n!}{e}<1$
(C) $\lim _{n \rightarrow \infty} \frac{n+1}{e}<1$
(D) $\lim _{n \rightarrow \infty} \frac{e}{n+1}<1$
(E) $\lim _{n \rightarrow \infty} \frac{e}{(n+1)!}<1$
4.

Which of the following gives the length of the path described by the parametric equations $x=\sin \left(t^{3}\right)$ and $y=e^{5 t}$ from $t=0$ to $t=\pi$?
(A) $\int_{0}^{\pi} \sqrt{\sin ^{2}\left(t^{3}\right)+e^{10 t}} d t$
(B) $\int_{0}^{\pi} \sqrt{\cos ^{2}\left(t^{3}\right)+e^{10 t}} d t$
(C) $\int_{0}^{\pi} \sqrt{9 t^{4} \cos ^{2}\left(t^{3}\right)+25 e^{10 t}} d t$
(D) $\int_{0}^{\pi} \sqrt{3 t^{2} \cos \left(t^{3}\right)+5 e^{5 t}} d t$
(E) $\int_{0}^{\pi} \sqrt{\cos ^{2}\left(3 t^{2}\right)+e^{10 t}} d t$
5.

$$
f(x)= \begin{cases}\frac{x^{2}-4}{x-2} & \text { if } x \neq 2 \\ 1 & \text { if } x=2\end{cases}
$$

Let f be the function defined above. Which of the following statements about f are true?
I. f has a limit at $x=2$.
II. f is continuous at $x=2$.
III. f is differentiable at $x=2$.
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III
6.

Given that $y(1)=-3$ and $\frac{d y}{d x}=2 x+y$, what is the approximation for $y(2)$ if Euler's method is used with a step size of 0.5 , starting at $x=1$?
(A) -5
(B) -4.25
(C) -4
(D) -3.75
(E) -3.5
7.

x	2	3	5	8	13
$f(x)$	6	-2	-1	3	9

The function f is continuous on the closed interval $[2,13]$ and has values as shown in the table above. Using the intervals $[2,3],[3,5],[5,8]$, and $[8,13]$, what is the approximation of $\int_{2}^{13} f(x) d x$ obtained from a left Riemann sum?
(A) 6
(B) 14
(C) 28
(D) 32
(E) 50
8.

In the $x y$-plane, what is the slope of the line tangent to the graph of $x^{2}+x y+y^{2}=7$ at the point $(2,1) ?$
(A) $-\frac{4}{3}$
(B) $-\frac{5}{4}$
(C) -1
(D) $-\frac{4}{5}$
(E) $-\frac{3}{4}$
9.

Let R be the region between the graph of $y=e^{-2 x}$ and the x-axis for $x \geq 3$. The area of R is
(A) $\frac{1}{2 e^{6}}$
(B) $\frac{1}{e^{6}}$

10.

Which of the following series converges for all real numbers x ?

(B) $\sum_{n=1}^{\infty} \frac{x x^{n}}{n^{2}} \frac{5^{n}}{n^{2}}$

$$
\begin{aligned}
& (x+2)^{n} c=-2 \\
& (x-5) \quad c=5
\end{aligned}
$$

(D) $\sum_{n=1}^{\infty} \frac{e^{n} x^{n}}{n!} \frac{e^{n} \cdot s^{n}}{n!} \rightarrow 0$
(E)

11. (2013, BC-6)

A function f has derivatives of all orders at $x=0$. Let $P_{n}(x)$ denote the n th-degree Taylor polynomial for f about $x=0$.
(a) It is known that $f(0)=-4$ and that $P_{1}\left(\frac{1}{2}\right)=-3$. Show that $f^{\prime}(0)=2$.
(b) It is known that $f^{\prime \prime}(0)=-\frac{2}{3}$ and $f^{\prime \prime \prime}(0)=\frac{1}{3}$. Find $P_{3}(x)$.
(c) The function h has first derivative given by $h^{\prime}(x)=f(2 x)$. It is known that $h(0)=7$. Find the third-degree Taylor polynomial for h about $x=0$.

AP ${ }^{\circledR}$ CALCULUS BC 2013 SCORING GUIDELINES

Question 6

A function f has derivatives of all orders at $x=0$. Let $P_{n}(x)$ denote the n th-degree Taylor polynomial for f-about $x=0$.
(a) It is known that $f(0)=-4$ and that $P_{1}\left(\frac{1}{2}\right)=-3$. Show that $f^{\prime}(0)=2$.
(b) It is known that $f^{\prime \prime}(0)=-\frac{2}{3}$ and $f^{\prime \prime \prime}(0)=\frac{1}{3}$. Find $P_{3}(x)$.
(c) The function h has first derivative given by $h^{\prime}(x)=f(2 x)$. It is known that $h(0)=7$. Find the third-degree Taylor polynomial for h about $x=0$.
(a) $P_{1}(x)=f(0)+f^{\prime}(0) x=-4+f^{\prime}(0) x$
$P_{1}\left(\frac{1}{2}\right)=-4+f^{\prime}(0) \cdot \frac{1}{2}=-3$
$f^{\prime}(0) \cdot \frac{1}{2}=1$
$f^{\prime}(0)=2$
(b) $P_{3}(x)=-4+2 x+\left(-\frac{2}{3}\right) \cdot \frac{x^{2}}{2!}+\frac{1}{3} \cdot \frac{x^{3}}{3!}$

$$
=-4+2 x-\frac{1}{3} x^{2}+\frac{1}{18} x^{3}
$$

(c) Let $Q_{n}(x)$ denote the Taylor polynomial of degree n for h about $x=0$.
$h^{\prime}(x)=f(2 x) \Rightarrow Q_{3}{ }^{\prime}(x)=-4+2(2 x)-\frac{1}{3}(2 x)^{2}$
$Q_{3}(x)=-4 x+4 \cdot \frac{x^{2}}{2}-\frac{4}{3} \cdot \frac{x^{3}}{3}+C ; C=Q_{3}(0)=h(0)=7$
$Q_{3}(x)=7-4 x+2 x^{2}-\frac{4}{9} x^{3}$

OR
$h^{\prime}(x)=f(2 x), h^{\prime \prime}(x)=2 f^{\prime}(2 x), h^{\prime \prime \prime}(x)=4 f^{\prime \prime}(2 x)$
$h^{\prime}(0)=f(0)=-4, h^{\prime \prime}(0)=2 f^{\prime}(0)=4, h^{\prime \prime \prime}(0)=4 f^{\prime \prime}(0)=-\frac{8}{3}$
$Q_{3}(x)=7-4 x+4 \cdot \frac{x^{2}}{2!}-\frac{8}{3} \cdot \frac{x^{3}}{3!}=7-4 x+2 x^{2}-\frac{4}{9} x^{3}$
$2:\left\{\begin{array}{l}1: \text { uses } P_{1}(x) \\ 1: \text { verifies } f^{\prime}(0)=2\end{array}\right.$
$3:\left\{\begin{array}{l}1: \text { first two terms } \\ 1: \text { third term } \\ 1: \text { fourth term }\end{array}\right.$
$4:\left\{\begin{array}{l}2: \text { applies } h^{\prime}(x)=f(2 x) \\ 1: \text { constant term } \\ 1: \text { remaining terms }\end{array}\right.$
12. (2010, BC-6B)

The Maclaurin series for the function f is given by $f(x)=\sum_{n=2}^{\infty} \frac{(-1)^{n}(2 x)^{n}}{n-1}$ on its interval of convergence.
(a) Find the interval of convergence for the Maclaurin series of f. Justify your answer.
(b) Show that $y=f(x)$ is a solution to the differential equation $x y^{\prime}-y=\frac{4 x^{2}}{1+2 x}$ for $|x|<R$, where R is the radius of convergence from part (a).

AP ${ }^{\circledR}$ CALCULUS BC 2010 SCORING GUIDELINES (Form B)

Question 6

The Maclaurin series for the function f is given by $f(x)=\sum_{n=2}^{\infty} \frac{(-1)^{n}(2 x)^{n}}{n-1}$ on its interval of convergence.
(a) Find the interval of convergence for the Maclaurin series of f. Justify your answer.
(b) Show that $y=f(x)$ is a solution to the differential equation $\underline{x y^{\prime}}-\underline{y}=\frac{4 x^{2}}{1+2 x}$ for $|x|<R$, where R is the radius of convergence from part (a).
(a) $\lim _{n \rightarrow \infty}\left|\frac{\frac{(2 x)^{n+1}}{(n+1)-1}}{\frac{(2 x)^{n}}{n-1}}\right|=\lim _{n \rightarrow \infty}\left|2 x \cdot \frac{n-1}{n}\right|=\lim _{n \rightarrow \infty}\left|2 x \cdot \frac{n-1}{n}\right|=|2 x|$
$|2 x|<1$ for $|x|<\frac{1}{2}$
Therefore the radius of convergence is $\frac{1}{2}$.
When $x=-\frac{1}{2}$, the series is $\sum_{n=2}^{\infty} \frac{(-1)^{n}(-1)^{n}}{n-1}=\sum_{n=2}^{\infty} \frac{1}{n-1}$.
This is the harmonic series, which diverges.
When $x=\frac{1}{2}$, the series is $\sum_{n=2}^{\infty} \frac{(-1)^{n} 1^{n}}{n-1}=\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n-1}$.
This is the alternating harmonic series, which converges.
The interval of convergence for the Maclaurin series of f is $\left(-\frac{1}{2}, \frac{1}{2}\right]$.
(b)

$$
\begin{aligned}
& \begin{aligned}
& \begin{array}{l}
y
\end{array}=\frac{(2 x)^{2}}{1}-\frac{(2 x)^{3}}{2}+\frac{(2 x)^{4}}{3}-\cdots+\frac{(-1)^{n}(2 x)^{n}}{n-1}+\cdots \\
&=4 x^{2}-4 x^{3}+\frac{16}{3} x^{4}-\cdots+\frac{(-1)^{n}(2 x)^{n}}{n-1}+\cdots \\
& y^{\prime}=8 x-12 x^{2}+\frac{64}{3} x^{3}-\cdots+\frac{(-1)^{n} n(2 x)^{n-1} \cdot 2}{n-1}+\cdots \\
& x y^{\prime}=8 x^{2}-12 x^{3}+\frac{64}{3} x^{4}-\cdots+\frac{(-1)^{n} n(2 x)^{n}}{n-1}+\cdots \\
& x y^{\prime}-y=4 x^{2}-8 x^{3}+16 x^{4}-\cdots+(-1)^{n}(2 x)^{n}+\cdots \\
& \quad=4 x^{2}\left(1-2 x+4 x^{2}-\cdots+(-1)^{n}(2 x)^{n-2}+\cdots\right)
\end{aligned}
\end{aligned}
$$

The series $1-2 x+4 x^{2}-\cdots+(-1)^{n}(2 x)^{n-2}+\cdots=\sum_{n=0}^{\infty}(-2 x)^{n}$ is a geometric series that converges to $\frac{1}{1+2 x}$ for $|x|<\frac{1}{2}$. Therefore $x y^{\prime}-y=4 x^{2} \cdot \frac{1}{1+2 x}$ for $|x|<\frac{1}{2}$.

