I. A 6. C 2. D 7. E 3. B 8. E 4. A 9. A 5. A 10. D

1.
If
$$f(x) = (\ln x)^2$$
, then $f''(\sqrt{e}) =$
(A) $\frac{1}{e}$ (B) $\frac{2}{e}$ (C) $\frac{1}{2\sqrt{e}}$ (D) $\frac{1}{\sqrt{e}}$ (E) $\frac{2}{\sqrt{e}}$

2.

What are all values of x for which the series $\sum_{n=1}^{\infty} \left(\frac{2}{x^2+1}\right)^n$ converges?

 $S(\frac{z}{z})^{N}$

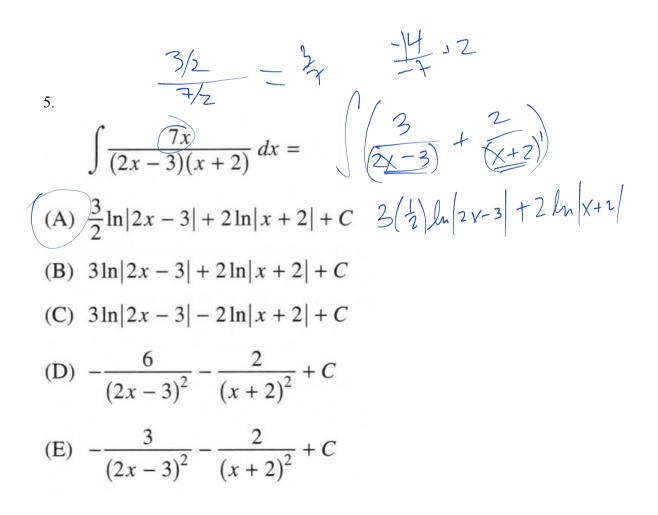
5

(A) -1 < x < 1(B) x > 1 only (C) $x \ge 1$ only (D) x < -1 and x > 1 only (E) $x \ge 1$ and $x \ge 1$ Let *h* be a differentiable function, and let *f* be the function defined by $f(x) = h(x^2 - 3)$. Which of the following is equal to f'(2)? (A) h'(1) (B) 4h'(1) (C) 4h'(2) (D) h'(4) (E) 4h'(4) $f'(x) = h'(x^2 - 3)(x - x)(x - 3)(x -$

4.

3.

In the xy-plane, the line x + y = k, where k is a constant, is tangent to the graph of $y = x^2 + 3x + 1$. What is the value of k? (A) -3 (B) -2 (C) -1 (D) 0 (E) 1



What is the sum of the series $1 + \ln 2 + \frac{(\ln 2)^2}{2!} + \dots + \frac{(\ln 2)^n}{n!} + \dots$?

(A) ln 2

(B) $\ln(1 + \ln 2)$

5 = 7

- (C) 2
- (D) e^2
- (E) The series diverges.

7.

x	0	1
f(x)	2	4
f'(x)	6	-3
g(x)	-4	3
g'(x)	2	-1

The table above gives values of f, f', g, and g' for selected values of x. If $\int_0^1 f'(x)g(x) dx = 5$, then

$$\int_{0}^{1} f(x)g'(x) dx =$$
(A) +14 (B) -13 (C) -2 (D) 7 (E) 15
$$\int_{1}^{1} g \frac{u}{f} \frac{v}{f} \frac{1}{g'} \frac{+}{+} \frac{1}{f'} \frac{g'}{g} \frac{+}{+} \frac{g'}{g} \frac{+}{+} \frac{1}{f'} \frac{g'}{g} \frac{+$$

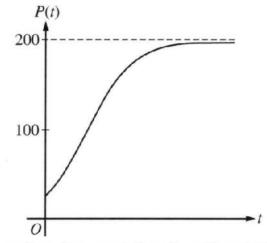
$$f(1)g(1) - f(0)g(0) - 5$$

If $f(x) = x \sin(2x)$, which of the following is the Taylor series for f about x = 0?

(A) $x - \frac{x^3}{2!} + \frac{x^5}{4!} - \frac{x^7}{6!} + \cdots$ (B) $x - \frac{4x^3}{2!} + \frac{16x^5}{4!} - \frac{64x^7}{6!} + \cdots$ (C) $2x - \frac{8x^3}{3!} + \frac{32x^5}{5!} - \frac{128x^7}{7!} + \cdots$ (D) $2x^2 - \frac{2x^4}{3!} + \frac{2x^6}{5!} - \frac{2x^8}{7!} + \cdots$ (E) $2x^2 - \frac{8x^4}{3!} + \frac{32x^6}{5!} - \frac{128x^8}{7!} + \cdots$

9.

8.



Which of the following differential equations for a population P could model the logistic growth shown in the figure above?

(A)
$$\frac{dP}{dt} = 0.2P - 0.001P^2$$

(B) $\frac{dP}{dt} = 0.1P - 0.001P^2$
(C) $\frac{dP}{dt} = 0.2P^2 - 0.001P$
(D) $\frac{dP}{dt} = 0.1P^2 - 0.001P$

(E)
$$\frac{dP}{dt} = 0.1P^2 + 0.001P$$

In the xy-plane, a particle moves along the parabola $y = x^2 - x$ with a constant speed of $2\sqrt{10}$ units per second. If $\frac{dx}{dt} > 0$, what is the value of $\frac{dy}{dt}$ when the particle is at the point (2, 2)?

(A) $\frac{2}{3}$	(B) $\frac{2\sqrt{10}}{3}$	(C) 3	(D) 6	(E) $6\sqrt{10}$
	$\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$	2	10 = V (y	(L)) + (x'(+))
				$(t)^{2} + (x'(t))^{2}$
	$\frac{dy}{kk} = \frac{y'(k)}{x'(k)}$	$\overline{\mathcal{T}}$	4D = (4)	$(t)^{2} + \frac{1}{9}(y'(t))^{2}$
2	X-(= y'(t)) = x'(t)			10 9 (y'(+)) ²
at . X=2.	3x'(t) = y'(t)		36	$= (y'(k))^2$
	$(\chi'(\xi) = \frac{1}{3}g'(\xi)$	$\mathbf{\mathcal{L}}$	y'lt.	= 6

10.

$$g'(x) = \frac{1}{3} - \frac{3}{2} \frac{2}{x} + \frac{3}{2} \frac{x^{4}}{x^{4}} + \dots + \frac{(-1)^{n} (2n+1) x^{2n}}{2n+3} + \dots$$

11. (2012, BC-6)

The function g has derivatives of all orders, and the Maclaurin series for g is

$$G(x) = \sum_{n=0}^{\infty} \left[(-1)^n \frac{x^{2n+1}}{2n+3} \right] = \left[\frac{x}{3} + \frac{x^3}{5} + \frac{x^5}{7} - \cdots \right] Error \leq \left[\frac{\left(\frac{1}{2}\right)^2}{7} \right] = \frac{1}{32 \cdot 7} = \frac{1}{224} < \frac{1}{200}$$

١

- (a) Using the ratio test, determine the interval of convergence of the Maelaurin series for g.
- (b) The Maclaurin series for g evaluated at $x = \frac{1}{2}$ is an alternating series whose terms decrease in absolute value to 0. The approximation for $g(\frac{1}{2})$ using the first two nonzero terms of this series is $\frac{17}{120}$. Show that this approximation differs from $g(\frac{1}{2})$ by less than $\frac{1}{200}$.
- (c) Write the first three nonzero terms and the general term of the Maclaurin series for g'(x).

(a)
$$k$$
.
 $n \rightarrow \infty = \begin{bmatrix} x^{2n+3} \\ 2n+5 \end{bmatrix}$
 $\frac{\chi^{2n+1}}{\chi^{2n+1}}$
 $\frac{\chi^{2}(2n+3)}{(2n+5)}$

$$|X-C| < |X^{2}| < |$$

Interval $\overline{-1 \leq x \leq |}$
 $[-1, \overline{]}$

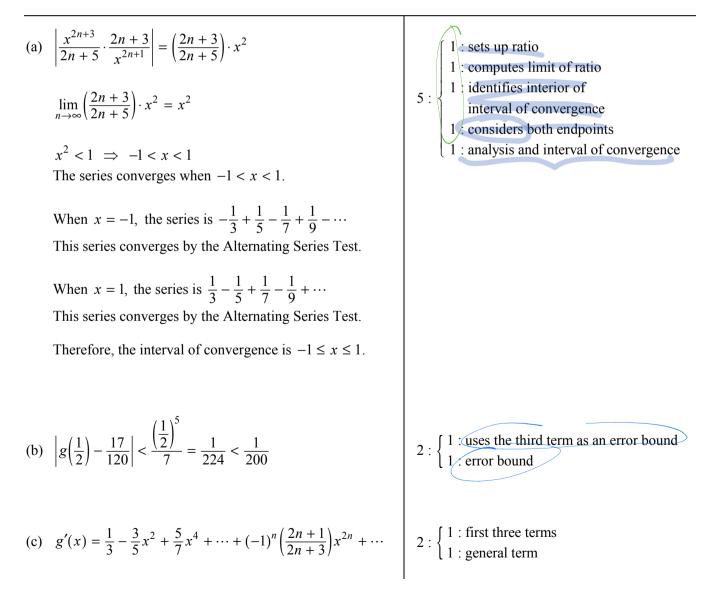
AP[®] CALCULUS BC 2012 SCORING GUIDELINES

Question 6

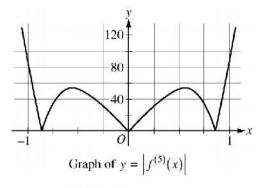
The function g has derivatives of all orders, and the Maclaurin series for g is

$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+3} = \frac{x}{3} - \frac{x^3}{5} + \frac{x^5}{7} - \cdots.$$

- (a) Using the ratio test, determine the interval of convergence of the Maclaurin series for g.
- (b) The Maclaurin series for g evaluated at $x = \frac{1}{2}$ is an alternating series whose terms decrease in absolute value to 0. The approximation for $g(\frac{1}{2})$ using the first two nonzero terms of this series is $\frac{17}{120}$. Show that this approximation differs from $g(\frac{1}{2})$ by less than $\frac{1}{200}$.
- (c) Write the first three nonzero terms and the general term of the Maclaurin series for g'(x).



© 2012 The College Board. Visit the College Board on the Web: www.collegeboard.org

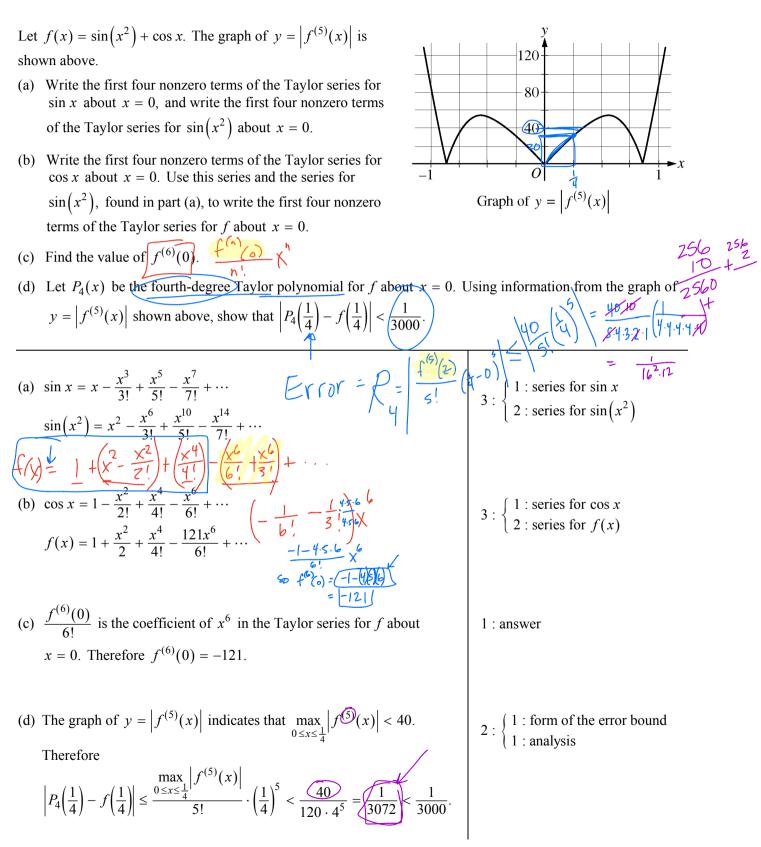


Let $f(x) = \sin(x^2) + \cos x$. The graph of $y = |f^{(5)}(x)|$ is shown above.

- (a) Write the first four nonzero terms of the Taylor series for sin x about x = 0, and write the first four nonzero terms of the Taylor series for $sin(x^2)$ about x = 0.
- (b) Write the first four nonzero terms of the Taylor series for $\cos x$ about x = 0. Use this series and the series for $\sin(x^2)$, found in part (a), to write the first four nonzero terms of the Taylor series for f about x = 0.
- (c) Find the value of $f^{(6)}(0)$.
- (d) Let $P_4(x)$ be the fourth-degree Taylor polynomial for f about x = 0. Using information from the graph of $y = \left| f^{(5)}(x) \right|$ shown above, show that $\left| P_4\left(\frac{1}{4}\right) f\left(\frac{1}{4}\right) \right| < \frac{1}{3000}$.

AP[®] CALCULUS BC 2011 SCORING GUIDELINES

Question 6



© 2011 The College Board. Visit the College Board on the Web: www.collegeboard.org.