Practice Exam BC-1

Calculus BC Section I, Part A Time — 55 minutes Number of questions — 28

No calculator is allowed for these questions.

x	f(x)	f'(x)		
0	1	2		
$\frac{1}{2}$	2	5		
1	3			
$\frac{3}{2}$	$\frac{1}{2}$	$-\frac{1}{2}$		
2	$\frac{3}{2}$	-2		

Questions 1 and 2 refer to the table above.

- If f is a differentiable function on the interval 0 < x < 2, find the derivative of the inverse function $f^{-1}(x)$ at $x = \frac{1}{2}$.

- (A) -4 (B) -2 (C) -1 (D) $-\frac{1}{8}$ (E) $-\frac{1}{16}$
- Using the table above and the fact that f'(x) is continuous on the interval $0 \le x \le 2$, $\int_0^2 f'(x) dx =$

The glass above is initially empty, then gradually filled with water. Which of the 3. following graphs best represents the volume V of water versus the height h of the water?

(A)

(B)

(D)

(E)

- If $f(x) = \sum_{n=0}^{\infty} \frac{(2x+1)^{n+1}}{n!}$, then $f''(-\frac{1}{2}) =$
 - (A) 0
- (B) 1
- (C) 2
- (D) 4
- (E) 8
- If f(x) is a continuous and even function and $\int_0^4 f(x) dx = -5$ and $\int_4^6 f(t) dt = 2$, then the average value of f(x) over the interval from x = -6 to x = 4 is
 - (A) -0.2
- (B) -0.8
- (C) 0.2
- (D) 1.2
- (E) 2

- Given the graph of y = f(x) shown above, which of the following values is the largest?
 - (A) f(0)

(B) f'(0)

(C) $\lim_{h\to 0} \frac{f(h)-1}{h}$

- (D) $\frac{f(1)-f(-1)}{2}$
- (E) $\frac{f'(1)-f'(-1)}{2}$
- $\lim_{h \to 0} \left(\frac{1}{h} \int_{1}^{1+h} e^{-t^{2}} dt \right) =$
 - (A) $-\frac{1}{2e}$ (B) $-\frac{2}{e}$ (C) 0 (D) $\frac{1}{e}$

- (E) the limit does not exist
- If the differential equation $\frac{dy}{dx} = y 2y^2$ has a solution curve y = f(x) containing point $\left(0, \frac{1}{4}\right)$, then $\lim_{x \to \infty} f(x) =$
 - (A) 0
- (B) $\frac{1}{4}$ (C) $\frac{1}{2}$ (D) 2
- (E) the limit does not exist

- If the acceleration vector of a particle in motion on a plane is $\vec{r}''(t) = (t \sin t, \sin t)$ 9. and the velocity vector at t = 0 is $\vec{r}'(0) = \langle 0, 1 \rangle$, then $\vec{r}'(\pi) =$

 - (A) $(-\pi, 2)$ (B) $(-\pi, 0)$ (C) (0, 1) (D) $(\pi, 1)$ (E) $(\pi, 3)$

- 10. After the substitution $u = \sqrt{x}$ in $\int \frac{\sqrt{x}}{\sqrt{x}+1} dx$, the resulting integral is
 - (A) $\int (1+u) du$
- (B) $\int \frac{1}{u+1} du$ (C) $\int \frac{u}{u+1} du$
- (D) $2 \int (u+u^2) du$
- (E) $2\int \frac{u^2}{u+1} du$
- 11. If $f(x) = \tan^{-1} x$ then

$$\lim_{x \to \sqrt{3}} \frac{f'(x) - f'\left(\sqrt{3}\right)}{x - \sqrt{3}} =$$

- (A) $-\frac{\sqrt{3}}{8}$ (B) $-\frac{1}{4\sqrt{3}}$ (C) $\frac{1}{4}$ (D) $\frac{\pi}{6}$ (E) $\frac{\pi}{3}$

12. If

$$f(x) = \begin{cases} \frac{|x|-2}{x-2}, & x \neq 2 \\ k, & x = 2 \end{cases},$$

then the value of k for which f(x) is continuous for all real values of x is k = 1

- (A) -2
- (B) -1
- (C) 0
- (D) 1
- (E) 2
- The radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{(3x+4)^n}{n}$ is
- (A) 0 (B) $\frac{1}{3}$ (C) $\frac{2}{3}$ (D) $\frac{3}{4}$ (E) $\frac{4}{3}$

The slope field shown above matches which differential equation?

(A)
$$\frac{dy}{dx} = \frac{1}{x}$$

(B)
$$\frac{dy}{dx} = \frac{1}{x^2}$$
 (C) $\frac{dy}{dx} = \frac{y}{x}$

(C)
$$\frac{dy}{dx} = \frac{y}{x}$$

(D)
$$\frac{dy}{dx} = \frac{\ln x}{x}$$

(E)
$$\frac{dy}{dx} = \frac{\sin x}{x}$$

The graph of $f(x) = \frac{\sin x}{|x|}$ has

- (A) no horizontal asymptotes and no vertical asymptotes
- (B) one horizontal asymptote and no vertical asymptotes
- (C) one horizontal asymptote and one vertical asymptote
- (D) one horizontal asymptote and two vertical asymptotes
- (E) two horizontal asymptotes and one vertical asymptote

16. If $f(x) = 4^{3x}$ then f'(x) =

(A)
$$3x(4^{3x-1})$$

(B)
$$4^{3x} (\ln 4)$$

(B)
$$4^{3x} (\ln 4)$$
 (C) $3(4^{3x})(\ln 4)$

(D)
$$\frac{4^{3x}}{\ln 4}$$

(E)
$$\frac{4^{3x}}{x \ln 4}$$

- The area enclosed by the lemniscate given by the polar equation $r^2 = 4 \sin 2\theta$ (whose graph is shown above) is
 - (A) 2
- (B) 4
- (C) 2π
- (D) 8
- (E) 4π

- Which of the following series converges?
 - (A) $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n+1}$ (B) $\sum_{n=2}^{\infty} \frac{1}{\ln n}$
- (C) $\sum_{n=1}^{\infty} \sqrt{\frac{n}{n+1}}$
- (D) $\sum_{n=1}^{\infty} \frac{1}{n \ln n}$ (E) $\sum_{n=1}^{\infty} \frac{\ln n}{n^2}$
- 19. If $f(x) = e^x$ then $\frac{d}{dx} [f(f(x))] =$

- (A) e^{x^2} (B) e^{e^x} (C) e^{x^e} (D) e^{2e^x}
- 20. If $\frac{dy}{dx} = 1 \frac{x}{y}$ and y(1) = 1, then when Euler's method with a step size of 0.5 is used to approximate y(2), the approximation is
 - (A) 0
- (B) 0.375
- (C) 0.5
- (D) 0.75
- (E) 1.5

- 21. For x > 0, $\frac{d}{dx} \int_{x}^{2x} \ln t \, dt =$
 - (A) $-\frac{1}{2x}$ (B) $\ln 2$ (C) $\ln 4$ (D) $\ln(2x)$

- (E) ln(4x)

- Suppose the first three terms of the Maclaurin series for e^x are used to approximate $\frac{1}{\sqrt{e}}$. If a is the approximate value of $\frac{1}{\sqrt{e}}$ obtained and $b = \left| \frac{1}{\sqrt{e}} - a \right|$, then
 - (A) $a = \frac{5}{8}$ and $\frac{1}{24} \le b < \frac{1}{8}$
 - (B) $a = \frac{5}{8}$ and $\frac{1}{48} \le b < \frac{1}{24}$
 - (C) $a = \frac{5}{9}$ and $b < \frac{1}{49}$
 - (D) $a = \frac{3}{4}$ and $\frac{1}{24} \le b < \frac{1}{8}$
 - (E) $a = \frac{3}{4}$ and $b < \frac{1}{48}$
- If the region underneath $y = \frac{10}{r^2}$ and above the x-axis for $x \ge 1$ is divided into two regions with equal areas by the line x = a, then a =
 - (A) 1 (B) 2 (C) 5
- (D) 10

- A series expansion for $f(x) = \frac{x}{1+x^2}$ is
 - (A) $1-x^2+x^4-x^6+...$
 - (B) $x + x^3 + x^5 + x^7 + ...$
 - (C) $x-x^3+x^5-x^7+...$
 - (D) $x^2 x^3 + x^4 x^5 + \dots$
 - (E) $x^2 \frac{x^4}{3} + \frac{x^6}{5} \frac{x^8}{7} + \dots$

- 25. $\int_{0}^{2} x \sqrt{4 x^{2}} dx =$

- (A) 1 (B) $\frac{4}{3}$ (C) $\frac{8}{3}$ (D) 2 (E) $\frac{16}{3}$
- The integral expression $\int_{1}^{2} \sqrt{1 + \frac{4}{x^2}} dx$ could represent the arc length from x = 1 to x = 2 for the function f(x) =
- (A) $-\frac{4}{x}$ (B) $\frac{2}{x}$ (C) $\ln\left(\frac{2}{x}\right)$ (D) $\ln(x^2)$ (E) $\ln(x^4)$

- The graph of f'(x), the derivative of f, is shown above. f(x) would increase most rapidly at which of the following domain values?
 - (A) c_1
- (B) c_2
- (C) c_3 (D) c_4 (E) c_5
- What is the slope $\frac{dy}{dx}$ of the polar curve $r = \frac{3}{\theta}$ at $\theta = \frac{\pi}{2}$?
 - (A) $\frac{-4}{\pi}$ (B) $\frac{-2}{\pi}$ (C) 0 (D) $\frac{2}{\pi}$ (E) $\frac{\pi}{2}$

Calculus BC
Section I, Part B
Time — 50 minutes
Number of questions — 17

A graphing calculator is required for some questions.

29. For the graph of y = f(x) defined on $0 \le x \le 4$, as shown above, a graph of $F(x) = \int_{x}^{0} f(t) dt$ is best represented by:

- 30. If $f(x) = \int_0^x \cos(t^2) dt$, then a linear approximation for f(2) using the y value on the tangent line to f(x) at $x = \sqrt{\pi}$ is

 - (A) -0.891 (B) -0.228
- (C) 0.435
- (D) 0.663
- (E) 1.805
- If the region bounded by $y = \sin^{-1} x$, $y = \frac{\pi}{2}$, and x = 0 is rotated about the y-axis, the volume of the solid formed is
 - (A) 2.467
- (B) 2.605
- (C) 2.694
- (D) 4.609
- (E) 5.636
- If f(x) is differentiable over the positive real numbers, then which of the following statements must be true?
 - I. f(x) is continuous over the positive real numbers
 - f(-x) is differentiable over the negative real numbers
 - f(|x|) is differentiable over all real numbers
 - (A) I only

(B) II only

(C) I and II

- (D) II and III
- (E) I, II, and III
- 33. The change in price of a popular toy was proportional to the square root of the number of weeks it had been on the market. The toy originally cost \$5.00 and increased by a nickel by the end of the first week. How much did the toy cost (to the nearest penny) at the end of the first 12 weeks?
 - (A) \$5.60
- (B) \$5.69
- (C) \$5.99
- (D) \$7.08
- (E) \$7.34

- 34. If $x = [f(t)]^2$ and y = f(t), then $\frac{d^2y}{dx^2} =$
 - (A) $\frac{1}{2f(t)}$

(B) $\frac{f'(t)}{2f(t)}$

- (D) $-\frac{f'(t)}{2f^2(t)}$
- (E) $-\frac{1}{4f^3(t)}$

An equation of a tangent line to the parametric curve $x = e^t$, $y = 2^t$ at t = 0 is:

(A)
$$y-1=\frac{1}{2}(x-1)$$

(B)
$$y-1 = (\ln 2) (x-1)$$
 (C) $y = (\ln 2) x$

(C)
$$y = (\ln 2) x$$

(D)
$$y = \frac{1}{\ln 2}(x-1)$$

(E)
$$y-1=\frac{e}{2}(x-1)$$

36. Recall that the diagonal of a cube is $\sqrt{3}$ times its side. The diagonal of a cube is expanding at the rate of 0.5 cm per second. How fast is the volume of the cube changing, in cm³/sec, when the diagonal is 3 cm?

- (A) 1.5
- (B) 2.598
- (C) 5.196
- (D) 9
- (E) 10.392

If a particle moves on the curve $x = \sin t$, $y = \sin 2t$, then at time t = 3 the speed of the particle is

- (A) 0.930
- (B) 0.965
- (C) 1.379
- (D) 1.645
- (E) 2.161

The base of a solid is a region bounded by $y = \ln x$, y = 0, and x = e. Cross sections perpendicular to the base and the y-axis are squares. An integral expression for the volume of this solid is

(A)
$$\int_0^1 (e - e^y)^2 dy$$

(B)
$$\int_{0}^{e} (e - e^{y})^{2} dy$$

(B)
$$\int_0^e (e - e^y)^2 dy$$
 (C) $\int_1^e (e - \ln y)^2 dy$

(D)
$$\int_{1}^{e} (\ln x)^{2} dx$$

(E)
$$\int_1^e (e - \ln x)^2 dx$$

The minimum distance from point (5, 6) to the curve $y = x^2 + 1$ is 39.

- (A) 2.358
- (B) 2.501
- (C) 2.701
- (D) 2.913
- (E) 3.015

- 40. If $x + y = \tan^{-1}(xy)$, then $\frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx}$
 - (A) $\frac{1+x^2y^2}{x}$
- (B) $\frac{y}{1+xy-x}$
- (C) $\frac{x-1-x^2y^2}{1+x^2y^2}$

- (D) $\frac{1+x^2+y^2}{x-x^2v^2-1}$
- (E) $\frac{y-1-x^2y^2}{1+x^2y^2-x}$
- $\sum_{k=1}^{2n} \sqrt{\frac{1+\frac{k}{n}}{n^2}}$ is a Riemann sum for which of the following integrals?
 - (A) $\int_0^1 \sqrt{1+x} \ dx$
- (B) $\int_0^2 \sqrt{1+x} \, dx$ (C) $\frac{1}{2} \int_0^1 \sqrt{1+x} \, dx$
- (D) $\int_0^1 \sqrt{1+2x} \, dx$
- (E) $\int_0^2 \sqrt{1+2x} \ dx$
- Particle A's velocity function is $v(t) = 4 t^2$ m/sec over $0 \le t \le 4$ seconds. For the same time interval, particle B's velocity function is $v(t) = t^3 - 4t$ m/sec. The difference in the total meters traveled by the two particles over $0 \le t \le 4$ is
- (A) 24 (B) $26\frac{2}{3}$ (C) $34\frac{2}{3}$ (D) $37\frac{1}{3}$ (E) $45\frac{1}{3}$

- 43. $\sum_{n=3}^{\infty} \frac{e^{\frac{n}{2}}}{\pi^n}$ is
 - (A) 0.304
- (B) 0.525
- (C) 4.808
- (D) 9.624
- (E) divergent
- A line from the point (4, 1) perpendicular to a tangent line to the graph of $f(x) = x^2$ intersects the graph of y = f(x) at x =
 - (A) 1.392
- (B) 1.647
- (C) 1.939
- (D) 4.472
- (E) 7.873

45. The graph of $F(x) = \int_0^x f(t) dt$ is shown above, for $0 \le x \le 4$. Which of the following is necessarily true?

$$I. \quad \int_0^4 f(t) \, dt = 3$$

II.
$$\int_{2}^{4} f(t) dt = \frac{3}{2}$$

III.
$$\int_{2}^{0} f(t) dt = \int_{2}^{4} f(t) dt$$

(A) I only

(B) II only

(C) III only

(D) I and II

(E) I, II, and III

Practice Exam BC-1

Calculus BC
Section II, Part A
Time — 45 minutes
Number of problems — 3

A graphing calculator is required for some problems or parts of problems.

- 1. The function f is defined by $f(x) = \frac{4\cos x x}{2 + \sqrt[3]{x^2}}$. The graph of y = f(x) is shown above. The functions g and h have derivatives given by g'(x) = f(x) and $h'(x) = \int_0^x f(t)dt$. The graph of g contains the point (0, 1).
 - (a) Write an equation for the tangent line to the graph of g at x = 0.
 - (b) Find the absolute maximum value of g on the closed interval [0, 1]. Give the reason for your answer.
 - (c) Find the x-coordinate of each point of inflection on the graph of y = h(x) for values of x between -10 and 10. Justify your answer.
 - (d) Which is larger, h'(2) or h'(3)? Justify your answer.

2. A stadium is filling with people from noon until game time at 3:00 p.m. The table below shows the rate of people entering the stadium (measured in people per minute) at particular times.

Time	Noon	1:00	1:30	2:00	2:20	2:40	2:50	2:55	3:00
Rate (people/min)	1	4	18	56	81	74	60	52	44

- (a) Estimate the total number of people attending the game using a trapezoidal approximation for four partitions, starting at noon, 1:30, 2:20, and 2:50.
- (b) The heaviest traffic occurs between 2:00 and 2:50. Estimate the average rate (number per minute) of people entering the stadium for that time period using a right-hand Riemann sum for 3 subintervals.
- (c) One possible model for the rate at which people enter the stadium is given by the function $R(t) = \frac{5 \cdot 10^5 e^{-0.05t}}{\left(1 + 1500 e^{-0.05t}\right)^2}$ people per minute, where *t* is the time in

minutes since noon. Write and evaluate (rounded to the nearest person) an expression that represents the total number of people at the stadium at 3 p.m., as predicted by this model.

- (d) Using the R(t) model from Part c, set up and evaluate an expression for the average number of people per minute entering the stadium between 2:00 and 2:50.
- 3. A particle moves along a path on a coordinate plane determined by the parametric equations $x(t) = t^2 + 1$ and $y(t) = t^3 3t$ over a time interval $0 \le t \le 3$, where the x and y coordinates are measured in centimeters and t is measured in seconds.
 - (a) At what time is the particle traveling at a speed of 5 cm/sec?
 - (b) How fast is the particle's distance from its initial position changing at time t = 2 sec?
 - (c) Set up and evaluate an expression for the total distance traveled by the particle from t = 0 to t = 3 sec.

Calculus BC
Section II, Part B
Time — 45 minutes
Number of problems — 3

No calculator is allowed for these problems.

- 4. The function F is defined as $F(x) = \int_1^x \sqrt{t^2 + 3t} dt$.
 - (a) Write the second-degree Taylor polynomial for F(x) at x = 1.
 - (b) Approximate $\int_{1}^{0} \sqrt{t^2 + 3t} dt$ using the Taylor polynomial from Part (a).
 - (c) Approximate $\int_0^2 \sqrt{t^2 + 3t} dt$ using the Taylor polynomial from Part (a) and properties of integrals.

- 5. Consider the graph of the function $f(x) = e^{-x}$ for $0 \le x < \infty$ above.
 - (a) Set up and evaluate an expression for the area of the region in the first quadrant below the graph of f(x).
 - (b) Write an equation for the line tangent to the graph of f(x) at x = c and find the area of the right triangle bounded by this tangent line and the x- and y-axes.
 - (c) When the triangular area found in Part (b) is removed from the area found in Part (a), what is the minimum possible area remaining? Justify your answer.

- 6. The curve S, graphed above, is defined by the equation $xy + y^2 = x^2 5$.
 - (a) Show that S is a solution to the differential equation $\frac{dy}{dx} = \frac{2x y}{x + 2y}$.
 - (b) Find the x- and y-coordinates of all points where S has vertical tangents.
 - (c) Sketch the slope field for the differential equation given in Part (a) at the 8 points indicated below.

(d) Write the equation of the line in the *xy*-plane that holds all the points with slope 0 in the slope field in Part (c).