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§P.3—Simplifying Expressions 

 
 

 

Jaime Escalante, the most famous high school calculus teacher of all time, had a banner in his classroom 

that read “Calculus doesn’t have to be made easy, it already is.”  How true that message is.  As I already 

mentioned, AP Calculus is simply two ideas, instantaneous rate of change, which is a division process, and 

areas of irregular regions, a multiplicative process.  To make it even simpler, then, calculus is about 

dividing and multiplying.  The thing that makes calculus such a challenging course is ironically not the 

calculus itself, but rather all the tedious algebra that is needed to implement the calculus. 

 

In this section, we will examine some of the algebraic “gymnastics” we’ll need. 

 

A mathematical expression is one of two types, either a phrase like “when in doubt, multiply by the page 

number” or a collection of numbers, variables, and/or operational signs.  Simplifying varieties of the 

second type allow us to work with smaller, more manageable things without a loss of generality.  Working 

with expressions is very different that working with conditional equations.  There are only a handful of 

things you can do with an expression without changing its value.  These include factoring, adding clever 

forms of zero (completing the square), and multiplying by a clever form of one (getting a common 

denominator).   

 

What is meant by “simplifying” is to make an expression smaller, more condensed, contain less “stuff”, 

with fewer terms or fewer factors, etc.  There’s no definitive “simplest form” in general, but I think you 

will begin to notice when an expression is stripped down as far it possibly can.  On multiple-choice 

questions, of course, you might have to simplify to a point that resembles (exactly) the correct answer 

choice. 

 

We’ll start with simplifying by factoring, of which there are several things to look for, summarized in the 

chart below 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let’s work a few. 

1. Look for a common factor 

2. Look for a special product like 

o Difference of two squares:   2 2a b a b a b     

o Perfect square trinomial:  
22 22a ab b a b      

o Sum/Difference of Cubes 

   3 3 2 2a b a b a ab b      

   3 3 2 2a b a b a ab b      

3. Factorable trinomial (Target Sum/Target Product) 

4. Guess and Check 

5. Grouping 

6. Using synthetic division 
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Example 1: 

Simplify 
3

2

9

7 12

x x

x x



 
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

That was too easy. 

 

Example 2: 

Simplify 
3 24 8 20 40

2 4

x x x

x

  


.
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Already the level of sophistication is increasing, but hopefully you’re still following along okay.  Hopefully 

you’re not too bored either.   

 

A complex (or compound) fraction is an expression that has fractions within fractions.  It might look 

intimidating, but I assure you it’s all bark and no bite.  Unlike it’s close relative, the compound fracture, 

dealing with these fractions is neither painful nor excruciatingly painful.  There is a tidy algebraic 

maneuver that will efficiently eradicate these complex or compound fractions.  It involves multiplying by a 

clever form of one that involves the least common multiple (LCM) of all the “miniature” denominators.   

 

Here’s one. 

 

Example 3: 

Simplify 

2

1 1

5
1 1

25

x

x





. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sometimes these complex fractions can be in disguise.  It’s your job to recognize them.  This will require a 

reminder about negative and rational exponents.  Here it is: 

 
m

m
n m nna a a   and m

m

b
b a

a

   

This means that all radical expressions can be written as rational exponents, with the root off the radical 

being the denominator of the exponent.  Factors with negative exponents can become a factor on the other 

“side” of a fraction simply by changing the sign of its exponent. 

 

Expressions like 
3 2

1

2 x
 can be equivalently written as 

2

3
1

2
x .   

When simplifying expressions involving radicals or variables in the denominator, it is easier to write them 

in exponential form; however, when evaluating these expressions for particular x-values, it is easier to do 

so in their radical or denominator form. 

 



Calculus Maximus                                                                                                                                                                           Notes P.3:  Simplifying 

Expressions 

Page 4 of 9 

Example 4: 

Simplify 
 

 

1

1
2

3 6 2

6 12 4

x

x x





 

 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sometimes fractional expressions contain radicals or rational exponents (hidden radicals, remember?).  

Simplifying these type of expressions usually involves a process called rationalization, which is a fancy 

name for algebraically moving radicals from either numerator to denominator or vice-versa.  You did this 

quite a bit in Precalculus, especially in your Trig unit.  Ratios like 
1

2
 became the equivalent

2

2
.  The 

purpose of this was to make the Unit Circle more uniform.  In general, both expressions are considered 

equally simplified.  In fact, one could make an argument that the first one is more simplified.  There will be 

times, though, when working with variable expressions where we will need to pull out the same trick to 

circumvent a algebraic tight spot. 

 

Example 5: 

Rationalize 
3 3x

x

 
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sometimes the process involves only numbers.   
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Example 6: 

Simplify 
4

1 5
 by rationalizing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sometimes simplifying expressions means creating them first, making a mountain out of a mole hill before 

making the mountain back into a mole hill. 

 

Before doing that, it’s important to understand function notation and how to evaluate a function. 

 

Function notation  y f x  is so useful because it provides an efficient way to see both input and output, 

independent and dependent variable, x- and y- value.  Your experience in evaluating functions is probably 

limited to plugging in specific values in for x.  If you’ve studied composition of functions, they you’ve 

been lucky enough to plug variable expression containing x in for x.  When this happens, it’s very useful to 

revert back to your days before algebra, when you used spaces, rectangular boxes, or parenthesis to 

represent an unknown, as in the follow conditional equation from those glorious days of your mathematical 

yesteryear. 

5     8   

 

Back then you got a gold star for writing a “3” inside the box.  You perhaps then got a warm, fuzzy feeling 

on the inside when your math teacher told you that you just solved and algebraic equation (or not).  We’ll 

do the same thing evaluating the function  
22

1

x x
f x

x





. 

 

Rewrite it as  
   

 

2
2           

     
     1

f





 

Now whatever appears in the parenthesis on the left side of the equation will appear in each and every 

parenthesis in the expression on the right-hand side of the equation. 

 

We’ll evaluate this function now for selected inputs. 
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Example 7: 

If  
   

 

2
2           

     
     1

f





, evaluate the following. 

 

 (a)  1f                                       (b)  1f                                      (c)  2f x   

 

 

 

 

 

 

(d)  xf e                                      (e)   sin 4f x                         (f)  pink elephantf   

 

 

 

 

 

 

 

 

 

You get the idea.  While this “template writing” is not a necessary step for success in 

AP Calculus, it provides a systematic way to avoid careless errors and perhaps a world 

of confusion.  Remember that it’s the algebra that makes calculus so difficult.  If there is 

a proven method for making it less difficult, it’s worth implementing.  Believe me, one 

missed negative sign can ruin your whole day.  It’s very frustrating to have to retrace 

your steps to find a subtle error.  It’s often better to just rework the problem a second 

time working more carefully, more slowly, and of course, more correctly. 

 

Whenever we plug in a variable expression for x into a function, we are creating a new function, much like 

we did with transformations.  This process is a type of composition.  Understanding composition of 

functions will be critical to your success later on when you learn to antidifferentiate and integrate.   

 

Example 8: 

If 2( ) 3 5 1f x x x   , simplify the expression 
   f x h f x

h

 
. 
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Almost more important than composition of functions is the decomposition of functions.  This involves 

identifying which function is on the “inside” and which function containing it is on the “outside” of a given 

function. 

 

Example 9: 

Decompose   3 4 1h x x   into two functions f and g such that        h x f g x f g x  . 

 

 

 

 

 

 

 

 

 

 

 

Very often you will have to simplify expressions or equations involving exponential expressions and/or 

logarithmic equations.  The rules for simplifying either type of expressions are very similar, since and 

exponent is nothing more than a log, and a log is nothing more than an exponent.  Here are the basic 

properties you’ll be working with. 

 

Exponents                      Logarithms 
0 1,  0a a                     ln1 0  

1a a                              ln 1e   
m n m na a a                    ln ln lnmn m n   
m

m n

n

a
a

a

                       ln ln ln
m

m n
n
   

 
n

m mna a                    ln lnnm n m  

1
,  0m

m
a a

a

               ln lnx xe x e   

 
m

m
n m nna a a          

ln
log

ln
b

x
x

a
  

 

 

 

In calculus, we will primarily use base e , rather than base 10, the common base.  The number e, 

not to be confused with the letter “e” or television network E!, is approximately 2.718 .  It was 

discovered and named by Swiss mathematician Leonhard Euler (pronounced “oiler”).  It is 

arguably the most famous and important irrational number in all of mathematics.  Called the 

natural base, this number is not only healthier and lower in low-density lipoproteins than base 

10, but occurs often in nature.  If you have an aversion to calling it the natural base, feel free to 

call it by some of its common (er, natural) monikers: Euler’s number, the Banker’s number, or 

1
lim 1

n

n n

 
 

 
. 

 Logs were invented by Scottish mathematician John 

Napier.  Originally called “Artificial Numbers,” logs 

are very real indeed,”  and Napier’s logs gave us the 

rules for working strictly with the exponents of 

numbers written as powers of a common base.  This 

was useful for working with very small, microscopic 

numbers as well as very large, astronomical numbers.  

Scientific notation is based on this using base ten, the 

common base. 

 Any log expression can be equivalently be written as 

and exponential expression.  The conversion formula 

is  

logb

y

x y

b x






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Example 10: 

Find the exact solution to the equation   2 16 3 2x x , then give a 3-decimal approximation.  Verify by 

solving the equation graphically on your calculator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Logs make evaluating and simplifying expressions so much fun and sometimes frustrating.  Because there 

are so many different forms of the same correct answer, you need to be adept and agile enough to easily 

manipulate between different equivalent forms of the same expression.  The AP exam doesn’t require you 

to simplify your answers on the free-response portion, but on the multiple-choice section, you might have 

to simplify your answer beyond a point you would normally stop.  Here’s and example that made it on the 

Silver Screen in the 1988 movie “Stand and Deliver” starring Edward James Olmos as the late Calculus 

guru Jaime Escalante.  It was an actual question on the 1985 AP Calculus exam (non-calculator portion). 

 

Which of the following is equal to ln 4 ? 

(A) ln3 ln1               (B) 
ln 8

ln 2
              (C) 

4

1

te dt               (D) 

4

1

ln xdx               (E) 

4

1

1
dt

t
 

 

You don’t know how to “translate” answer choices (C), (D), and (E) yet, but by the end of the year, once 

you’ve mastered how to do that, this question will read more like the following: 

 

Which of the following is equal to ln 4 ? 

(A) ln3 ln1      (B) 
ln 8

ln 2
     (C) 4 1e e      (D) 4ln 4 3      (E) ln 4 ln1  

 

The first two answer choices are bait for the easy prey who haven’t memorized or sufficiently practiced 

their log properties.  Choices (C) and (E) should be noticeably wrong for anyone with log or “e” 

experience, including starting campfires and winning spelling bees.  By process of elimination, the correct 

answer choice must be (E).  This can be arrived at by two different methods. 

 

ln 4 ln1

ln 4 0

4



         or          

ln 4 ln1

4
ln

1

ln 4



 
 
 

 

 

Perhaps a better question would be the following: 
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Example 11: 

Which of the following is NOT equal to ln 4 ? 

(A) ln 4 ln1      (B) 2ln 2      (C) 
ln16

2
     (D) ln8 ln 2      (E) 

 ln ln4
e     (F) ln4ln e      (G) 

ln 4

ln1
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: On the actual AP exam, the last answer choice is NOT always the correct answer choice.  Be careful 

of overgeneralizations and unproven theories based on limited empirical evidence. 


