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§P.5—Domain, Range, & Symmetry 

 
 

What happens when you put a log into a wood chipper?  You get wood chips.  

 

What happens when you put Styrofoam into a wood chipper?  You get Styrofoam chips. 

 

What happens if you put a metal rod into a wood chipper?  You get a broken wood chipper. 

 
Functions are “machines” much like a wood chipper.  There are certain values that when put “into” the 

“machine” yield an output, and there are other values that “break” the machine and give no output. 

 

The inputs are the independent variables, usually an x.  The collection of all 

allowable inputs that yield an output is called the domain of the function. 

 

The outputs are the dependent variables, usually a y or  f x .  The collection 

of all possible outputs generated from all the inputs is called the range of a 

function. 

 

 

When studying functions or using a wood chipper, it’s important to know 

what inputs are allowable and which are not.  Once the domain is established, 

then the fun can begin of anticipating what the outputs will be.   

 

We will be finding the domain of our functions analytically, that is, without seeing the graph of the 

function, while we will primarily be finding the range by sketching a graph and looking from low to high to 

see what y-values the graph takes on. 

 

Finding Domains Analytically 

When finding domains from a given function, there are only a handful of things that will restrict the 

domain.   

1. Dividing by zero (just a handful of numbers) 

2. Taking even roots of negative numbers (an infinite amount with a common trait) 

3. Taking logarithms of non-positive numbers (an infinite amount with a common trait) 

4. Explicitly undefined values, as in piecewise functions (can be a finite or infinite amount) 
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If you can safeguard against these four things from happening, you’ll enjoy many years of care-free 

production from your function “machine.”  We’ll look at an example of each real soon.  But first . . .  

 

Symmetry of graphs of functions 

Knowing the existence or nonexistence of any symmetry a graph might have will help us sketch it more 

efficiently, give us insight into its behavior, and allow us to buy proper clothing for it when we’re 

Christmas shopping. 

 

There are two main types of symmetry we’re interested in, and functions exhibiting either of the two have 

special names. 

1. y-axis symmetry (called even functions) 

2. origin symmetry (called odd functions) 

 

If we are looking at the visual representation of a function, looking for symmetry is an easy task.  Graphs 

that lay on top of themselves exactly if they were folded along the y-axis have y-axis symmetry and are 

even functions.  Graphs that look exactly the same when spun 180  (
2


 radians) around the origin have 

origin symmetry and are odd functions (notice “origin” and “odd” both start with the letter “o” and are 

mysteriously both missing the letter “z.”) 

 

                     
 

y-axis symmetry                               origin symmetry                                     no symmetry 

even function                                        odd function                                   peculiar function 

  

Wouldn’t it be great to determine a function’s symmetry (or lack thereof) from the equation alone?  We’re 

in luck.  Understanding what’s going on visually will enable us to develop a simple algebraic test for 

determining symmetry. 

 

Even function 

Because these functions have y-axis symmetry, they have identical y-values spaced evenly on either side of 

the y-axis for every x-value in the domain.  For example, if   2f x x , then   

       
2 2

2 2 4 2 2f f       

       
2 22f f           

       
2 2

100 100 10000 100 100f f       

       
2 22f x x x x f x       
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So in general, for ANY even function, 

   f x f x  , for all fx D  

 

Algebraically, all you have to do is replace every x with x  (carefully), simplify the expression, then 

compare it to the original function.  If it’s identical, you’ve found an even function.  If it’s not the same, it 

could be odd.  

 

Odd function 

Because these functions have origin symmetry, they have a rotational symmetry.  Pieces of the graph, 

therefore, in quadrant I, where y is positive, must coincide with the graph in quadrant III, where y is 

negative.  Similarly, quadrant II ( 0y  ) must be commensurate with the graphical features in quadrant IV 

( 0y  ). 

      

   
3

2 2 8f                               
3

2 2 8f    

So 

   2 2f f    

 

In general, for ANY odd function, 

 

   f x f x  , for all fx D  

 

You’re probably wondering if a function can be both even and odd and/or whether any function can have x-

axis symmetry.  The answer to both these questions is “YES!”  There is one such function, and it is both 

even and odd and is the only function to possess x-axis symmetry.  Do you know which function it is?? 
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Example 1: 

Find the domain of  
33 12

x
f x

x x



, then find and justify any symmetry. 

 

Notice that we have a denominator with a variable in it.  There might be a value or values that, when 

plugged into the function, yield a zero in the denominator.  These values must be identified and “thrown 

out” of the prestigious domain club.  In is generally easier to identify these values if the denominator is 

completely factored. 

 

 

 
 

 
  

 

3

2

3 12

3 4

3 2 2

0,  2,  2

so domain is : 0, 2f

x
f x

x x

x
f x

x x

x
f x

x x x

x

D x x








 

 

 

 

 

Test for symmetry: 

 
 

   

 

     

 

   

3

3

3

3

3

3 12

3 12

1
3 12

1

1 3 1̀2

3 1̀2

x
f x

x x

x
f x

x x

x
f x f x

x x

x
f x

x x

x
f x f x

x x


 

  


 

 

 
     

  

  
   

  

  


 

So  f x is an even function. 

 

 
 

 

 

 

 Most values that makes the denominator equal to zero are 

called discontinuities of the graph because the graph, 

existing on either side of the discontinuity, is interrupted by 

the singularity. 

 There are two main types of discontinuities, infinite non-

removable discontinuities (also known as Vertical 

Asymptotes or VAs) and removable point discontinuities 

(also known as holes). 

 Notice that 0x   also makes the numerator equal to zero 

yielding the indeterminate form of 
0

0
.  This means that the 

graph of  f x  has a hole at 0x  .  This happens also since 

the common factor of 
x

x
 can be divided out, or removed, 

from the equation. 

 The other two x-values of 2x    do NOT make the 

numerator equal to zero, yielding a 
0

0


.  This means that 

the graph of  f x  has a vertical asymptote at each 2x    

and 2x  .  Notice that the two factors of  2x   and 

 2x   CANNOT be divided out and are therefore 

nonremovable. 

 Using the original, expanded version of the function is 

usually easier to use for symmetry tests. 

 For a rational function, factor a negative out from either the 

numerator or denominator one at a time, then compare to 

the original function. 

 Notice the function immediately did not appear to be even, 

but only after factoring out the second negative one from 

the denominator did our conclusion become obvious. 
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Example 2: 

Find the domain of  
1

3

x
f x

x


 , then find and justify any symmetry. 

Here we have a square root radical with a root index of two, an even number.  Negatives under an even 

radical, that is, negative radicands, are mathematically impossible when talking about real numbers (and 

we are, by default, unless noted otherwise), since it’s equally impossible to raise a negative number to an 

even exponent and obtain a negative number.  Since there’s a variable beneath the radical, there are likely 

many numbers that will give us a negative number, the type we want to exclude from the domain.  We’ll 

also have to guard against division by zero again, as there is a variable in the denominator.  We’ll focus on 

the radicand first. 

 

 
1

3

0

1 0

1

x
f x

x

radicand

x

x






 



 

 

From the denominator, 0x  . 

 

So  : 1fD x x   

 

Test for symmetry: 

 

 
 

 

 

     

   
 

 

1

3

1

3

1
1

3

1
1

3

x
f x

x

x
f x

x

x
f x f x

x

x
f x f x

x

 
 



 
 



 
    

 
   

 

So f is neither even nor odd. 

  

 
 

 

 For functions involving radicals, we can set up an 

inequality to find the values of x that DO work, that 

ARE in the domain by setting the radicand greater than 

or equal to zero. 

 For functions involving division by zero, we usually 

find the few values that yield division by zero, then 

EXCLUDING those from the domain. 

 In this example, the only value yielding division by zero 

was already excluded by our work with the radicand, so 

we don’t need to throw it out again.  If the division-by-

zero value had not already been excluded, we would 

need to formally exclude it. 

 When checking for symmetry, there’s no way to pull the 

negative one out from under the radical since 1 i  , 

the imaginary unit, so we were unable to divide out the 

1

1




 like in the previous example. 

 Remember that calculators lie and graphs can be 

misleading.  Notice that the graph doesn’t show the y-

values at or just to the right of 1x  , even though they 

exist.  It’s because the graph is too steep, and your 

calculator eschews vertical lines in function mode.  A 

quick numerical at 1x   confirms the function exists 

there. 

 In function notation like  f x , f is the name of the 

function, and x is the independent variable.  When 

referring to a particular function, you refer to it by it 

name, f, or, if it’s in trouble, it’s full name,  f x . 
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Example 3: 

Find the domain of 
  4 2

( )
4

et
g t

t t



, then find and justify any symmetry. 

Here we have a double whammy: 

A variable in the denominator, under 

an even-root radical. 

 

2

0

4 0

radicand

t



 
 

From the graph of 24y t   

 
2 2t   . 

 

From the denominator, 0t   so, 

 : 2 2,  0tD t t t     

 

Test for symmetry: 

 
 

   

 
 

24 4

1

e t
g t

t t

g t




 

  


 

 1

et

  

 
 

 

2

2

4

4

t t

et
g t g t

t t







  


 

So g is an even function. 

 

 
 

 Our function’s name here is L’il g.  The independent 

variable is t. 

 We cannot solve the inequality algebraically in this 

case since the radicand is not linear.  Instead we 

solve it graphically (from our knowledge of parent 

functions and transformations, or by finding the 

zeros of the radicand and testing the intervals 

between (we’ll do this later in the year when finding 

relative extrema). 

 Our inequality in this problem is strictly greater 

than, rather than greater than or equal.  Although we 

can still take the fourth-root of zero, because it 

would give us a zero in the denominator, we want to 

omit this single value. 

 The other value that yields division by zero other 

than 2t    is 0t  .  Because this value lies within 

our accepted domain interval, we need to exclude 

this singular value. 

 When drawing g by hand, we would put open circles 

at 2x   , 0x  , and 2x  . 

 Since the flow of the graph from left to right is 

interrupted at 0x  , g has a discontinuity (a hole) at 

0x  . 

 Technically we don’t call 2x    and 2x   

discontinuities, since the flow of g was not 

interrupted.   This is actually where the graph of g 

starts and stops, respectively (and non-inclusively). 
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Example 4: 

Find the domain of  
 

2

ln 3

4

x
f x

x





 

Here we have a logarithm  

and an even radical. 

 

For the radical : 

2

0

4 0

radicand

x



 
 

From the graph of 24y x   

 
24 0,  x x     

 

From the logarithm: 

3 0

3

x

x

 

 
 

 

So  : 3fD x x    

Or  : 3,fD    

 

Test for symmetry: 

   

   

f x f x

f x f x

  

 
 

So f is neither even nor odd. 

 

            

 Just because a function has a radical, even an even radical, 

doesn’t mean the radical will have domain restrictions.   

 The “thing we take the log of” is called the argument of the 

logarithm.   

 To algebraically find the domain of a log function, set the 

argument greater than zero, then solve the inequality.   

 If the logarithm is in the denominator, you must also set the 

argument equal to one, solve, then exclude this value.  This 

is because log 1 0b   for any base b. 

 We can write our domain in either the traditional set-

builder notation (as we have been using) or in the 

sometimes-more-convenient interval notation. 

 In interval notation, a   and   are equivalent to a   and a 

  respectively. 

 In interval notation, a   and   are equivalent to a  and 

  respectively. 

 In interval notation, we must always list from least to 

greatest, with a starting value and ending value separated by 

a comma. 

 In interval notation, a   or   ALWAYS gets a  or  .  

 The infinity symbol,  , is called a lemniscate. 

 The graph of  f x has a vertical asymptote at the root of 

the argument, here at 3x   .  Notice again how the 

calculator’s graph stops abruptly, even though the graph 

continues down to negative infinity as x approaches 

negative three from the right-hand side. 
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Example 5: 

Find the domain of  
 

,        0

ln 1 ,    0

x x
f x

x x

  
 

 

, then find and justify any symmetry. 

 

 This is a piecewise function that is part y x   and part  ln 1y x  .  As the function indicates, the 

graph is  y x   to the left of and at 0x   and  ln 1y x  to the right of 0x  .. 

 

When finding the domain of a piecewise function, we should first look to see where the graph is explicitly 

defined.  For this function, it is defined for all real numbers.  Any domain restrictions, therefore, will have 

to come from the pieces on the intervals in which they’re defined. 

 

Knowing how to sketch parent functions will help you expedite the entire process, but you can find it 

analytically as well.  In this case, each of the pieces is defined everywhere on its defined interval, so the 

domain is  

 :fD x x   or  : ,fD    

 

              

 
 

,        0

ln 1 ,    0

x x
f x

x x

  
 

 

 

 

Notice that the two pieces seem to meet at the origin, and in fact, they do!  This means that either piece 

could lay claim to the function value at 0x  without changing the function’s characteristics.  However, 

because the equation is for a function, only one piece may be explicitly defined at 0x  . 

 

When it comes to symmetry, you have to be careful.  At first glance, the graph itself looks like an even 

function, but as you already know, graphs can be misleading and calculators can lie.  If you were sketching 

the graph without a calculator, you might actually draw it with y-axis symmetry.  The algebraic analysis, 

however, clearly shows that this function is NOT an even function (nor is it odd). 

 

   f x f x   and    f x f x    

 

 

This is a good time to mention the relative growth rate of each of the two functions making up the pieces of 

the graph above.  Although they have similar shapes, the logarithmic function grows more slowly than the 

radical function.  This is always the case:  If fact, logarithmic functions are near the bottom of the 

“hierarchy of growth” charts, growing faster than only one function, the constant function (horizontal line) 

that doesn’t grow at all!  This will be valuable information once we start evaluating limits at infinity. 
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Example 6: 

Find the domain of   2

1
,      2

3

2,     2 2

2 ,           2       z

z
z

m z z z

z


  


    





, then sketch the function.  Look for any symmetry. 

This is a 3-piece function.  The most interesting x-values are 2z    and 2z  , the two values where the 

function changes from one piece to another.  Careful inspection will reveal that the function is NOT 

defined at 2z  , so 2z   is obviously not in the domain. 

 

Now we look at the three pieces themselves.  The quadratic piece (middle) and the exponential piece 

(bottom) themselves have domains of all real numbers, so we don’t have to worry about them.  The top 

piece, though, has a vertical asymptote at 3z   .  Since we’re using this piece everywhere left of 2z   , 

the vertical asymptote is part of the function. 

 

The domain of m is therefore  : 3,2mD z z    or      : , 3 3,2 2,mD        

          
 

*Notes:  

 The   is the “union” symbol, the mathematical symbol for the word “or.”  It is used to join disjoint 

intervals together. 

 To graph a piecewise function, enter each piece in a separate line, and on each line, divide by the 

Boolean argument, that is the interval placed in parenthesis) 

 Graphing a function in a “Zoom Decimal” window will often enable you see “holes” and eliminate the 

vertical lines where the asymptote lives.  If you need a larger window, you can also multiply the X- or 

Y- scale by any scale factor to preserve this feature 

 When sketching the graph by hand, you would want to put a solid dot and/or an open circle on the 

endpoints of each interval of the graph to show whether that point is inclusive or non-inclusive, as 

shown below. 

 


