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§9.5—Lagrange Error Bound 

 
 

Lagrange Form of the Remainder (also called Lagrange Error Bound or Taylor’s Theorem 

Remainder) 

 

Suppose we didn’t have a calculator, but we were interested in the value of sin1.  How could we 

approximate its value?  

 

 Eyeball it on the graph? 

 Compare it to 
3

sin
3 2


  ??? 

 Tangent line approximation? 

 Euler’s method? 

 Taylor polynomial of degree 1 ? 

 

Suppose we choose the third or fifth option, after all, polynomials are relatively easy to evaluate.  Is there a 

way, depending on the degree of the polynomial we decide to use, to determine how accurate our 

approximation is?  That is, do we know what remains from our approximation to get the actual value? 

 

YES!  Yes, we do . . . kind of. 

 

When a Taylor polynomial,  nT x , centered at x c  is used to approximate a function,  f x , at a value 

x a  near the center,  we can express our result as follows:  

 

If: 

Function = Polynomial Approximation + Remainder,  

 

Then:  

 

Remainder = Function – Polynomial Approximation 

 

Written mathematically, if: 

 

( ) ( ) ( )n nf a T a R a    

 

Then: 

( ) ( ) ( )n nR a f a P a   

 

 

We define the remainder, ( )nR a , to be: 

   

 1

1
( )

( ) ( )
( 1)!

n

n
n n

f z
R a T a f a a c

n



   

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Taylor’s Theorem 

 

Historically, the remainder was not due to Taylor but to a French mathematician, Joseph Louis Lagrange  

(1736-1813), the MVT guy.   

 

Historical Note:  Up to the time of Mr. Lagrange, there seemed to 

have been very little interest in determining the error between exact 

and approximate values, but rather, there was a shared enthusiasm of 

“good feeling” for the rapidity of approximations and the goodness of 

the values they were finding.   

 

Langrange wanted to quantify this “good feeling,” and first published 

his estimation of the remainder for the Taylor series in his Théorie 

des fonctions analytiques in 1797.  Remember that Brook Taylor 

introduced his formula for generating polynomial terms in 1712!   

 

Langrange’s efforts, thus ended the 85 year Era of “Good Feelings,” 

(not to be confused with the period in American History that 

coincided with Monroe’s presidency.) 

 

For this reason, ( )nR a  is called the Lagrange form of the remainder. 

 

 

When applying Taylor’s Formula, we would not expect to be able to find the exact value of z .  Rather, we 

are merely interested in a safe upper bound (maximum value) for  1
( )

n
f z


 from which we will be able to 

tell how large the remainder ( )nR a is. 

 

 

 

 

 

 

 

 

 

If a function  f  is differentiable through order 1n   in an interval containing the center x c , then for 

each x a  in the interval, there exists a number x z  between a and c such that 

 

   
 

 
2( ) ( )

( ) ( ) ( ) ( )
2! !

n
n

n

f c f c
f a f c f c a c a c a c R a

n


          

 

where the remainder ( )nR a  is given by 

 1

1
( )

( ) ( )
( 1)!

n

n
n

f z
R a a c

n



 


, called the Lagrange Remainder 

(or Lagrange Error Bound). 

 

 

a hmm, hmm, hmm, hmm. 



Calculus Maximus                                                                                                                                                                          Notes 9.5: Lagrange Error Bound 

Page 3 of 6 

 

Example 1: 

(Calculator Permitted)  Let  f  be a function with 5 derivatives on the interval  2,3 .  Assume that 

 5
( ) 0.3f x   for all x in the interval  2,3  and that a fourth-degree Taylor polynomial,  4T x , for  f  at 

2c   is used to estimate (3)f . 

 

(a) How accurate is this approximation?  Give four decimal places. 

 

 

 

 

 

 

(b) Suppose that 4(3) 1.763T  .  Use your answer from (a) to find an interval in which (3)f must reside. 

 

 

 

 

 

 

(c) Could (3)f equal 1.768?  Why or why not? 

 

 

 

 

 

 

 

(d) Could (3)f equal 1.761?  Why or why not? 

 

 

 

 

 

 

 

 

 

Sometimes the value of  1
( )

n
f z


 on the interval between our center, c, 

and the x-value at which we would like to evaluate our function, a, is, itself, 

not explicitly given nor easy to find.  In this case, we may choose the first 

known, reasonable rational number greater than  1
( )

n
f z


.   If we 

choose a number that is too large, we defeat the purpose of the error bound, 

but if we choose a value smaller than  1
( )

n
f z


, there is no guarantee that 

our approximation will fall in our interval. 
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Example 2: 

(Calculator Permitted)  Let’s return to our original quandary—approximating sin1 with an idea of how 

accurate our approximation would be. 

 

(a) Find the fifth-degree Maclaurin polynomial for sin x .  Then use your polynomial to approximate sin1, 

and use Taylor’s Theorem to find the maximum error for your approximation.  Give five decimal 

places. 

 

 

 

 

 

 

 

 

(b) Use your answer from (a) to find an interval  ,a b such that sin1a b  . 

 

 

 

 

 

 

 

 

 

(c) Could sin1equal 0.87?  Why or why not? 
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Example 3: 

(No Calculator) 

(a) Write the fourth-degree Maclaurin polynomial for ( ) xf x e .  Then use your polynomial to 

approximate e , and find a Lagrange error bound for the maximum error when 0.5x  . 

 

 

 

 

 

 

 

(b) Use your answer from (a) to find an interval  ,a b such that a e b  . 

 

 

 

 

 

 

 

Example 4: 

(Calculator Permitted)  The function f has derivatives of all orders for all real numbers x.  Assume that 

(2) 6f  , (2) 4f   , (2) 7f    , (2) 8f   . 

 

(a) Write the third-degree Taylor polynomial for f about 2x  , and use it to approximate (2.3)f .  Give 

three decimal places. 

 

 

 

 

 

 

 

 

(b) The fourth derivative of f satisfies the inequality  4
( ) 9f x   for all x in the closed interval  2,2.3 .  

Use the Lagrange error bound on the approximation of (2.3)f  found in part (a) to find an interval 

 ,a b  such that (2.3)a f b  .  Give three decimal places. 

 

 

 

 

 

 

 

(c) Based on the information above, could (2.3)f  equal 6.992?  Explain why or why not.  
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Example 5: 

(2011 BC6)  Let    2sin cosf x x x  .   

The graph of 
   5

y f x  is shown at right. 

 

(a)  Write the first four nonzero terms of the Taylor series 

for sin x  about 0x  , and write the first four nonzero 

terms of the Taylor series for  2sin x  about 0x  . 

 

 

 

 

 

 

 

(b) Write the first four nonzero terms of the Taylor series for cos x  about 0x  .  Use this series and the 

series for  2sin x , found in part (a), to write the first four nonzero terms of the Taylor series for  f  

about 0x  . 

 

 

 

 

 

 

 

(c) Find the value of 
   
6

0f . 

 

 

 

 

 

 

(d) Let  4P x  be the fourth-degree Taylor polynomial for  f  about 0x  .  Using information from the 

graph of 
   5

y f x  shown above, show that 4
1 1 1

4 4 3000
P f
   

    
   

. 

 

 

 

 


