Name \qquad Date \qquad Period \qquad

Worksheet 1.1—Limits \& Continuity

Short Answer: Show all work. Unless stated otherwise, no calculator permitted.

1. (1) Explain in your own words what is meant by the equation $\lim _{x \rightarrow 2} f(x)=4$. Is it possible for this statement to be true and yet $f(2)=5$? Explain. What graphical manifestation would $f(x)$ have at $x=2$?
(3) Sketch a possible graph of $f(x)$.
(1) The limit as x approaches 2 , from bothsides, the function (y) value approaches 4 .
(2) Yes. $f(2)=5$ while also $\lim _{x \rightarrow 2} f(x)=4$. $f(x)$ would have a removeable point disc. (akca hole) at $(2,4)$

放
2. (1) Explain what it means to say that $\lim _{x \rightarrow 1^{-}} f(x)=3$ and $\lim _{x \rightarrow 1^{+}} f(x)=6$. What graphical manifestation would $f(x)$ have at $x=1$? Sketch a possible graph of $f(x)$.
(1) As x approaches 1 (from the $u f t$) the function (y) valve approaches 3 . As x approaches 1 (from the right) the function (y) value approactus l.
(2) $f(x)$ would have a non-remaveable jump discontinuity at $x=1$

3. Explain the meaning of each of the following, then sketch a possible graph of a function exhibiting the indicated behavior.
(a) $\lim _{x \rightarrow-2} f(x)=\infty$
(b) $\lim _{x \rightarrow-3^{+}} g(x)=-\infty$.

The function f increoses without bound on both sides
of $x=-2 . f(x)$ has a VA at $x=-2$.
As x approacus -3 (from the rigut)
Tre function is decreasing without bound

4. For $f(x)=\frac{x^{2}+x-20}{x^{2}-16}$, algebraically determine the following:
(a) $f(4)=\frac{(4)^{2}+(4)-20}{(4)^{2}-16}$
(b) $\lim _{x \rightarrow 4^{-}} f(x)=\frac{9}{8}$
(c) $\lim _{x \rightarrow 4^{+}} f(x)=\frac{9}{8}$
(d) $\lim _{x \rightarrow 4} f(x)=\frac{9}{8}$
$=\frac{0}{0}$
$f(x)=\frac{(x+5)(x-4)}{(x+4)(x-4)}$
hole $\Rightarrow \lim _{x \rightarrow 4^{-}} f(x)=\lim _{x \rightarrow 4^{+}} f(x)$

$$
f(x)=\frac{x+5}{x+4}, x \neq 4
$$

noe ble $\frac{0}{0}, \lim _{x \rightarrow 4} f(x)=\frac{4+5}{4+4}=\frac{9}{8}$
(e) $\lim _{x \rightarrow-4} f(x)=$ DNE 0 . $\begin{aligned} & f(-4)=\frac{-4+5}{-4+4}=\frac{1}{0} \\ & \text { VA@ } x=-4\end{aligned}$

Page 1 of 7
(f) $\lim _{x \rightarrow 0^{-}} f(x)=\frac{5}{4}$ \uparrow
contimuous@x=0!
$f(0)=\frac{(0)^{2}+(0)-20}{(0)^{2}-16}=\frac{5}{4}$
(g) $\lim _{x \rightarrow 1} f(x)=\frac{6}{5}$
cont at $x=1$
$f(1)=\frac{\left.(1)^{2}+4\right)-20}{(1)^{2}-16}=\frac{-18}{-15}=\frac{6}{5}$
(h) $\begin{aligned} & \lim _{x \rightarrow-1} \\ & \text { cout } f(x)=\frac{4}{3} \\ & x=-1\end{aligned}$
$f(-1)=\frac{(-1)^{2}+(-1)-20}{(-1)^{2}-16}$
$=\frac{-20}{-15}$
5. Using the definition of continuity, determine whether the graph of $f(x)=\frac{x^{2}+x}{x^{3}+2 x^{2}-3 x}$ is continuous at the following. Justify. $f(x)=\frac{x(x+1)}{x(x+3)(x-1)}$
(a) $x=0$
(b) $x=1$
(c) $x=2$
$f(0)=$ DNE
\therefore Since $f(0)=D N E$,
$f(x)$ is not cont at
$x=0$.
$f(1)=D N E$
\therefore Since $f(1)=D N E$,
$f(x)$ is not cont at $x=1$.
$f(2)=\frac{(2)+1}{(2+3)(2-1)}=\frac{3}{5}$
$\lim _{x \rightarrow 2} f(x)=\frac{3}{5}$
$\therefore \operatorname{Sin} c \frac{3}{5}=\frac{3}{5}, f(x)$ is
cont. at $x=2$.
6. For $f(x)= \begin{cases}-x^{2}, & x<0 \\ 0.001, & x=0, \text { algebraically determine the following: } \\ \sqrt{x}, & x>0\end{cases}$
(a) $f(0)$
(b) $\lim _{x \rightarrow 0^{-}} f(x)$
(c) $\lim _{x \rightarrow 0^{+}} f(x)$
(d) $\lim _{x \rightarrow 0} f(x)$
(e) continuity of f at $x=0$. Justify.
$=0.001$
$=-(10)^{2}$
$=\sqrt{0}$
$=0$
\therefore Since $0 \neq 0.001$,
$f(x)$ is not cont at $x=0$.
7. Evaluate each of the following continuous functions at the indicated x-value:
(a) $\begin{aligned} & \lim _{\theta \rightarrow \frac{11 \pi}{6}} \sin \theta=\sin \frac{11 \pi}{6} \\ & \hat{\uparrow}^{6}=-\frac{1}{2} \\ & \text { cont । }\end{aligned}$
(b) $\lim _{x \rightarrow 6} 2^{x}=2^{6}=64$
(c) $\lim _{\substack{x \rightarrow 0 \\ \text { count! }}}\left(57 x^{85}-2 x^{45}+100 x^{11}-99999 x+5\right)=5$
8. Evaluate each of the following:
(a) $\lim \tan x=\infty$
$x \rightarrow \frac{\pi^{-}}{2} \quad$ (DNE)

(b) $\lim \tan x=-\infty$
${ }_{x \rightarrow \frac{\pi}{2}^{+}} \quad$ (DNE
(c) $\lim _{\pi} \tan x=\triangle N E$ $x \rightarrow \frac{\pi}{2}$
Note only DNE

$$
\text { since }-\infty \neq \infty
$$

(d) $\lim _{x \rightarrow-5^{-}} \frac{-2}{x+5}=\infty$
(e) $\lim _{x \rightarrow-5^{+}} \frac{-2}{x+5}=-\infty$
(f) $\lim _{x \rightarrow-5} \frac{-2}{x+5}=D N E$

Page 2 of 7
9. For the function f whose graph is given at below, evaluate the following, if it exists. If it does not exist, explain why.

(a) $\lim _{x \rightarrow 3} f(x)=\infty$
(b) $\lim _{x \rightarrow 7} f(x)=-\infty$
(c) $\lim _{x \rightarrow-4} f(x)=-\infty$
(ANE)
(ANE)
(ANE)
(d) $\lim _{x \rightarrow-9^{-}} f(x)=\infty$
(ANE)
(e) $\lim _{x \rightarrow-9^{+}} f(x)=-\infty$ (NE)
(f) $\lim _{x \rightarrow-9} f(x)=$ DIE

$$
(-\infty \neq \infty)
$$

(g) What are the equations of the vertical asymptotes?

$$
\text { VA at } x=-9, x=-4, x=3 \text { q } x=7
$$

10. A patient receives a $150-\mathrm{mg}$ injection of a drug every four hours. The graph at right shows the amount $C(t)$ of the drug in the bloodstream after t hours. Approximate $\lim _{t \rightarrow 12^{-}} C(t)$ and $\lim _{t \rightarrow 12^{+}} C(t)$, then explain in a complete sentence the significance/meaning of these one-sided limits in terms of the injections at $t=12$ hours.

$$
\lim _{t \rightarrow 12^{-}} C(t)=150 \quad \lim _{t \rightarrow 12^{+}} C(t)=300
$$

The infection given at the $12^{\text {th }}$ hour

causes the concentration of the aug in the bloodstream to
Page 3 of 7 jump from 150 mg to 300 mg .
11. (Calculator Permitted) Sketch the graph of the function $f(x)=\frac{1}{1+2^{1 / x}}$ in the space below, then evaluate each, if it exists. If it does not exist, explain why. Name the type and location of any discontinuity.

$f(x)$ has a jump@ $@=0$
(a) $\lim _{x \rightarrow 0^{-}} f(x)=1$
(b) $\lim _{x \rightarrow 0^{+}} f(x)=0$
(c) $\lim _{x \rightarrow 0} f(x)=$ DIE
(d) $f(0)=$ DNE
12. Using the definition of continuity at a point, discuss the continuity of the following function. Justify.

$$
\begin{aligned}
& \qquad \begin{array}{ll}
x=-1 \\
f(-1)=-1 \\
\lim _{x \rightarrow-1^{-}} f(x)=3
\end{array} \\
& \therefore \text { Since }-1 \neq 3, f(x) \text { is } \\
& \text { not cont @ } x=-1 .
\end{aligned} \quad\left\{\begin{array}{ll}
2-x, & x<-1 \\
x, & -1 \leq x<1 \\
(x-1)^{2}, & x \geq 1
\end{array} \quad \begin{array}{l}
x(1)=0 \\
\end{array}\right.
$$

13. For $f(x)=\left\{\begin{array}{ll}3 a x-b, & x<1 \\ 5, & x=1 \\ 2 a \sqrt{x}+b, & x>1\end{array}\right.$ find the values of a and b such that $f(x)$ is continuous at $x=1$. Show the work that leads to your answer.
$f(1)=5$ To be cont $@ x=1$ need: $\lim _{x \rightarrow 1^{-}} f(x)=f(1)=\lim _{x \rightarrow 1} f(x)$

$$
\begin{array}{ll}
\lim _{x \rightarrow 1^{-}} f(x)=5 & \lim _{x \rightarrow 1^{+}} f(x)=5 \\
\lim _{x \rightarrow 1^{-}} 3 a x-b=5 & \lim _{x \rightarrow 1^{+}} 2 a \sqrt{x}+b \\
3 a-b=5 & 2 a+b=5
\end{array}
$$

$$
+\left\{\begin{array}{l}
3 a-b=5 \\
2 a+b=5
\end{array}\right] \begin{aligned}
& 5 a=10
\end{aligned}
$$

$$
a=2
$$

$$
\begin{gathered}
2(2)+b=5 \\
b=1
\end{gathered}
$$

The function
$f(x)=\left\{\begin{array}{cc}6 x-1 & x<1 \\ 5 & x=1 \\ 4 \sqrt{x}+1 & x>1\end{array}\right.$
is cont @ $x=1$
14. (Calculator permitted) Fill in the table for the following function, then use the numerical evidence (to 3 decimal places) to evaluate the indicated limit. (Be sure you're in radian mode)

$$
f(x)=\frac{\sin (3 x)}{x}
$$

x	-0.1	-0.01	-0.001	0	0.001	0.01	0.1
$f(x)$	2.955	2.999	2.999	$\Delta M E$	2.999	2.999	2.955

Based on the numeric evidence above, $\lim _{x \rightarrow 0} f(x)=3$
Multiple Choice: Put the Capital Letter of the correct answer in the blank to the left of the number. Be sure to show any work/analysis.

E 15. $\lim _{x \rightarrow 0^{-}}\left(1-\frac{1}{x}\right)=$

$$
f(x)=\frac{1}{x}
$$

$1-(-\infty)$
(A) 1
(B) 2
(C) $-\infty$
(D) 0
(E) ∞
A 16. Find $\lim _{x \rightarrow 1} f(x)$ if $f(x)=\left\{\begin{array}{lll}3-x, & x \neq 1 & 2 \\ 1, & x=1 & 1\end{array}\right.$ > hole $\lim _{x \rightarrow 1} f(x)=2$
(A) 2
(B) 1
(C) $\frac{3}{2}$
(D) 0
(E) DNE

D17. For which of the following does $\lim _{x \rightarrow 4} f(x)$ exist? of $\lim _{x \rightarrow 4^{-}} f(x)=\lim _{x \rightarrow 24^{+}} f(x)$
I.

graph of $f(x)$
II.

graph of $f(x)$
III.

graph of $f(x)$
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I and III only

E- 18. If $f(x)=\left\{\begin{array}{ll}\ln x, & 0<x \leq 2 \\ x^{2} \ln 2, & 2<x \leq 4\end{array}, \lim ^{2} \ln 2^{x \rightarrow 2}-\lim _{x \rightarrow 4^{+}} f(x)=\ln f(x)=4 \ln 2\right.$
(A) $\ln 2$
(B) $\ln 8$
(C) $\ln 16$
(D) 4
(E) nonexistent

Use the graph of $f(x)$ above to answer questions 19-22.
\qquad 19. $\lim _{x \rightarrow 7} f(x)=$
(A) 1
(B) 2
(C) -1
(D) 4
(E) DNE

D 20. $\lim _{x \rightarrow 0^{-}} f(x)=$
(A) 1
(B) 2
(C) -1
(D) 4
(E) DNE

E 21. $\lim _{x \rightarrow 2} f(x)=$
(A) 2
(B) 3
(C) -1
(D) 4
(E) DNE

D
22. Which of the following regarding $f(x)$ at $x=5$ true?
I. $\lim _{x \rightarrow 5^{-}} f(x)=3$ 久
II. $\lim _{x \rightarrow 5^{+}} f(x)=f(5)$
III. $f(x)$ is continuous at $x=5$
(A) I only
(B) II only
(C) I and II only
(D) II and III only
(E) I, II, and III

D 23. If $f(x)=\left\{\begin{array}{lll}a e^{x}+b, & x<0 & \begin{array}{ll}a+b=4 & -2 a=4 \\ 4, & x=0 \\ 4 & =2+b=4 \\ b x-2 a, & x>0\end{array}\end{array}\right.$
(A) 2
(B) -2
(C) 4
(D) 6
(E) no such value exists

E 24. If $f(x)=\frac{1}{x-2}$ and $\lim _{x \rightarrow(-k+1)} f(x)$ does not exist, then $k=$
(A) 2
(B) 3
(C) 1
(D) -2
(E) -1

$$
\begin{gathered}
f(x) \text { nas a VA C } x=2 \\
\lim _{\substack{ \\
x \rightarrow 2}} f(x)=\text { DME } \\
\substack{-k+1=2 \\
k=-1}
\end{gathered}
$$

A
25. The function $f(x)=\left\{\begin{array}{ll}\frac{x^{2}}{x}, & x \neq 0 \\ 0, & \text { hole }\end{array}\right.$ fillud in $^{k=-1}$
(A) is continuous for all x
(B) has a removable point discontinuity at $x=0$
(C) has a non-removable oscillation discontinuity at $x=0$
(D) has an non-removable infinite discontinuity at $x=0$
(E) has a non-removable jump discontinuity at $x=0$

B 26. If $f(x)=\left\{\begin{array}{ll}\frac{x^{2}-x}{2 x}, & x \neq 0 \\ k, & x=0\end{array}\right.$ is continuous at $x=0$, then $k=$
(A) -1
(B) $-\frac{1}{2}$
(C) 0
(D) $\frac{1}{2}$
(E) 1

$$
\begin{aligned}
& \frac{x(x-1)}{2 x} \text { hore e } x=0 \quad \frac{0-1}{2}=-\frac{1}{2} \\
& k=-\frac{1}{2}
\end{aligned}
$$

